The typical program of courses required to satisfy this degree totals 126-131 hours as outlined below including up to 12 hours of non-primary language (if not completed in high school); in no case will a program totaling less than 120 hours qualify for graduation. In addition, in order to graduate there is a minimum 2.0 cumulative academic grade point average and student must attain a 2.5 academic grade point average in the chemistry, biochemistry, biology, mathematics, physics and advanced electives in science/engineering courses specified in this curriculum. All proposals for course substitutions must be approved by the academic advisor. This curriculum is intended for those students who desire a rigorous education in chemistry, biochemistry, and biology, who have definite research-oriented goals, and whose career objectives include graduate school, MD/PhD programs, or industry.

Students earning the Biochemistry degree automatically complete the Chemistry minor. Students earning a degree in the Specialized Curriculum in Biochemistry may not earn a second degree in the Science and Letters Curriculum in Molecular and Cellular Biology.

Departmental distinction: A student seeking distinction must satisfy the following:
- Complete a minimum of 6 credit hours of undergraduate research (BIOC 290 and BIOC 492) with a minimum of 4 credit hours of BIOC 492.
- Earn at least a 3.25 grade-point average.
- Present a senior thesis to the department.

General education: Students must complete the Campus General Education (https://courses.illinois.edu/gened/DEFAULT/DEFAULT/) requirements including the campus general education language requirement.

Minimum hours required for graduation: 120 hours.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 202 & CHEM 203 & CHEM 204 & CHEM 205</td>
<td>General Chemistry I (preferred sequence)</td>
<td>9-10</td>
</tr>
<tr>
<td></td>
<td>Elementary Organic Chemistry I</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>and Accelerated Chemistry II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Accelerated Chemistry Lab II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Accelerated Chemistry Lab II (preferred sequence)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic chemistry, select from:</td>
<td></td>
</tr>
</tbody>
</table>

References:
1. [Biochemistry BS](http://catalog.illinois.edu/undergraduate/las/molecular-cellular-biology-bslas/)
2. [Molecular and Cellular Biology](http://catalog.illinois.edu/undergraduate/las/)
Advanced Composition writing requirement (BIOC 460 is required)

Humanities/Arts to satisfy the campus general education requirements

Social/Behavioral sciences to satisfy the campus general education requirements

Cultural Studies to satisfy the campus general education requirement

Electives (not including any credit in satisfaction of the above variable requirements)

1. Transfer credit must be approved by an advisor in biochemistry in order to be used to satisfy degree requirements.
2. A more detailed description of the requirements is listed in the Biochemistry Curriculum Handbook, available in room 419A of Roger Adams Laboratory.
3. PHYS 213 is not required if CHEM 442/CHEM 444 sequence is taken.
4. Freshman orientation course is under development and will be required. See advisor for details.
5. An approved list of current courses will be updated annually in January/February for the coming year. Contact advisor.
6. The requirements for the Campus General Education categories of Natural Sciences and Technology and Quantitative Reasoning I are fulfilled through coursework in the curriculum.

for the degree of Bachelor of Science Major in Biochemistry (Specialized Curriculum)

Sample Sequence
This sample sequence is intended to be used only as a guide for degree completion. All students should work individually with their academic advisors to decide the actual course selection and sequence that works best for them based on their academic preparation and goals. Enrichment programming such as study abroad, minors, internships, and so on may impact the structure of this four-year plan. Course availability is not guaranteed during the semester indicated in the sample sequence.

Students must fulfill their Language Other Than English requirement by successfully completing a third level of a language other than English. See the corresponding section on the Degree and General Education Requirements page (http://catalog.illinois.edu/general-information/degree-general-education-requirements/).

First Year
First Semester Hours Second Semester Hours
Free elective course 1 STAT 212 3
MATH 220 or 221 5 CHEM 102 or 202 3
General Education course 3 CHEM 103 or 203 2
Language Other than English (3rd level) 4 General Education course or Composition 1 3
Composition I or General Education course 4 MCB 150 4

17 15

Second Year
First Semester Hours Second Semester Hours
CHEM 104 or 204 3 CHEM 232 or 236 3
CHEM 105 or 205 2 CHEM 233 or 237 2
MCB 250 3 MATH 241 4
MCB 251 2 PHYS 211 or 101 4
MATH 231 3 General Education course 3
General Education course 3

16 16

Third Year
First Semester Hours Second Semester Hours
PHYS 212 or 102 4 MCB 354 3
MCB 252 3 Advanced Science/Technical Elective course 3
MCB 253 2 PHYS 213 (or Free elective course) 2
CHEM 332 or 436 3 General Education course 3
General Education course 3 General Education course 3

15 14

Fourth Year
First Semester Hours Second Semester Hours
BIOP 401 3 BIOC 406 3
BIOC 455 4 BIOC 460 3
CHEM 440 or 442 4 BIOC 446 or CHEM 444 3
Advanced Science/Technical Elective course 3 Advanced Science/Technical Elective course 4

14 13

Total Hours 120

for the degree of Bachelor of Science Major in Biochemistry (Specialized Curriculum)

Upon successful completion of the Biochemistry Specialized Curriculum, students will be able to:

1. Understand and appreciate that the diversity of life evolved over time by biomolecular processes of mutation, selection, genetic change, and epigenetics.
2. Explain that molecular and macromolecular structure as well as supramolecular architecture determine function and regulation.
3. Explain that information storage and flow are molecular-based, dynamic, and interactive.
4. Understand and appreciate that biochemical mechanisms and kinetics ensure relative cellular stability and function under external or internal changing condition.

Information listed in this catalog is current as of 03/2024
5. Explain that energy is required by and transformed in biochemical systems as governed by the laws of thermodynamics.
6. Illustrate that living organisms and biological systems interact via molecular connections.
7. Design a scientific process and employ the scientific method, demonstrating that biochemistry is evidence-based and grounded in the formal practices of observation, objective measurement, and hypothesis testing.
8. Execute quantitative analysis and mathematical reasoning to interpret biochemical data.
9. Construct and utilize predictive models and simulations that define chemical relationships, as well as molecular interactions of complex systems.
10. Apply concepts from other sciences that span biology, chemistry, physics, mathematics, computation, and engineering to interpret biochemical phenomena.
11. Communicate biochemical concepts and understanding to members of a diverse scientific community, as well as to the general public.
12. Identify social and health-related dimensions of biochemical investigations.

for the degree of Bachelor of Science Major in Biochemistry (Specialized Curriculum)

Biochemistry Department website (http://mcb.illinois.edu/departments/biochemistry/)
Biochemistry faculty (http://mcb.illinois.edu/faculty/biochemistry/)
Biochemistry email (biocug@mcb.uiuc.edu)

Overview of LAS Admissions & Requirements (http://catalog.illinois.edu/schools/las/academic-units/)
College of Liberal Arts and Sciences website (https://las.illinois.edu/)