The Department of Astronomy offers a major and a minor in astronomy. In addition, students may pursue astronomy as part of the LAS Major in Computer Science and Astronomy (http://catalog.illinois.edu/undergraduate/las/comp-science/astronomy).

The major in astronomy, administered by the Department of Astronomy, is based upon both a broad and an in-depth exploration into astronomy and allied disciplines, and is an excellent way to gain a general science education. It may be chosen by students who wish to have an astronomy research career or an astronomy background for use in related fields, such as working in national laboratories, observatories, planetariums, NASA, aerospace industry, many computer-related fields, journalism, or science writing to name a few. Astronomy courses can also be customized to satisfy a secondary field for the undergraduate curriculum in General Engineering.

Astronomy students are also encouraged to double major or minor in a second field such as chemistry, computer science, geology, mathematics or physics. Specific programs of study in other areas such as biology, economics, English, history, or journalism for individual students can be designed and periodically updated through mutual discussions between the students and their academic advisers.

The Department of Astronomy also sponsors the Minor in Astronomy.

For the Degree of Bachelor of Science in Liberal Arts and Sciences

Major in Astronomy

E-mail: astronomy@illinois.edu

Minimum required major and supporting course work normally equates to 47-48 hours.

General education: Students must complete the Campus General Education requirements (https://courses.illinois.edu) including the campus general education language requirement.

Twelve hours of 300- and 400-level Astronomy/Physics courses must be taken on this campus.

Minimum hours required for graduation: 120 hours

Departmental distinction. A student majoring in astronomy may earn distinction or high distinction by attaining a minimum grade point average of 3.4 or 3.75, respectively, in required major courses (defined in the table below) taken at UIUC. For highest distinction, in addition to meeting the minimum requirements for high distinction, a senior thesis (ASTR 490) must be completed with strong endorsement by the research supervisor. Questions about eligibility for distinction status should be directed to an astronomy advisor before the senior year.

Select three of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 210</td>
<td>Introduction to Astrophysics 1</td>
<td>3</td>
</tr>
<tr>
<td>ASTR 404</td>
<td>Stellar Astrophysics</td>
<td></td>
</tr>
<tr>
<td>ASTR 405</td>
<td>Planetary Systems</td>
<td></td>
</tr>
<tr>
<td>ASTR 406</td>
<td>Galaxies and the Universe</td>
<td></td>
</tr>
<tr>
<td>ASTR 414</td>
<td>Astronomical Techniques</td>
<td></td>
</tr>
</tbody>
</table>

Select at least 12 hours of 300- or 400-level ASTR or PHYS courses 2,3

Supporting Technical Courses

Physics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 211</td>
<td>University Physics: Mechanics</td>
</tr>
<tr>
<td>PHYS 212</td>
<td>University Physics: Elec & Mag</td>
</tr>
<tr>
<td>PHYS 213</td>
<td>Univ Physics: Thermal Physics</td>
</tr>
<tr>
<td>PHYS 214</td>
<td>Univ Physics: Quantum Physics</td>
</tr>
</tbody>
</table>

Mathematics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221</td>
<td>Calculus I 4</td>
<td></td>
</tr>
<tr>
<td>MATH 231</td>
<td>Calculus II</td>
<td></td>
</tr>
<tr>
<td>MATH 241</td>
<td>Calculus III</td>
<td></td>
</tr>
</tbody>
</table>

1 Students without a background in physics or astronomy are encouraged to take ASTR 121 and ASTR 122 during their freshman year.

2 Other 300- or 400-level technical classes, e.g. chemistry, computer science engineering, or statistics can be substituted with academic adviser approval.

3 A maximum of 4 hours of credit in ASTR 390 (or equivalent “Independent Study” course, such as PHYS 497) can be counted towards this requirement.

4 MATH 220 may be substituted for MATH 221. MATH 220 is appropriate for students with no background in calculus.

Minor in Astronomy

The minor in astronomy is designed to broaden the student's knowledge of science and our place in the universe. The minor in Astronomy will benefit especially those students who are eager to learn astronomy but do not anticipate it to be their career. The Astronomy minor is also suitable for students who intend to pursue careers in areas that may benefit from a good knowledge of astronomy such as aerospace industry, science writing, scientific journalism, or science teaching in schools.

E-mail: astronomy@illinois.edu

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 100</td>
<td>Introduction to Astronomy 1</td>
<td>3-6</td>
</tr>
<tr>
<td>ASTR 121</td>
<td>Solar System and Worlds Beyond</td>
<td></td>
</tr>
<tr>
<td>& ASTR 122</td>
<td>Stars and Galaxies 1</td>
<td></td>
</tr>
<tr>
<td>ASTR 210</td>
<td>Introduction to Astrophysics</td>
<td></td>
</tr>
</tbody>
</table>

Advanced Astronomy

300- or 400-level courses taught by the Department of Astronomy 2

Courses at any level taught by the Department of Astronomy 2

Minimum total hours

1 Credit not granted for both ASTR 100 and the ASTR 121/ASTR 122 sequence.

2 No more than 4 hours of ASTR 390 will be counted towards the minor.
Information listed in this catalog is current as of 04/2018

ASTR Class Schedule (https://courses.illinois.edu/schedule/DEFAULT/DEFAULT/ASTR)

Courses

ASTR 100 Introduction to Astronomy credit: 3 Hours.
Introduces the student to the basic concepts of modern astronomy. Covers topics including the night sky; the solar system and its origin; the nature and evolution of stars; stellar remnants, including white dwarfs, neutron stars, and black holes; extrasolar planetary systems; galaxies and quasars; dark matter and dark energy; the Big Bang and the fate of the universe; and life in the universe. Credit is not given for ASTR 100 if credit in any of ASTR 121, ASTR 122, ASTR 210, or equivalent has been earned. Students with credit in PHYS 211 are encouraged to take ASTR 210.
This course satisfies the General Education Criteria for: Nat Sci Tech - Phys Sciences

ASTR 121 Solar System and Worlds Beyond credit: 3 Hours.
Introductory survey of the Solar System; structure and motions of the Earth and Moon; planetary motions; natures and characteristics of the planets and smaller solar system bodies; planetary moons and rings; meteors, meteoroids, and meteorites; properties of the Sun; origin and evolution of the Solar System; discovery of extrasolar planetary systems; architecture of extrasolar planetary systems and comparison to our solar system; habitable extrasolar planets. Emphasis will be placed on problem-solving and scientific methods. Credit is not given for ASTR 121 if credit in either ASTR 100 or ASTR 210 has been earned. Students with credit in PHYS 211 are encouraged to take ASTR 210.
This course satisfies the General Education Criteria for: Nat Sci Tech - Phys Sciences Quantitative Reasoning II

ASTR 122 Stars and Galaxies credit: 3 Hours.
Introduction to celestial objects and phenomena beyond the Solar System, and their governing basic physical principles; galaxies, quasars, and structure of the universe; dark matter and dark energy; the Big Bang and the fate of the universe; the Milky Way; the interstellar medium and the birth of stars; stellar distances, motions, radiation, structure, evolution, and remnants, including neutron stars and black holes. Emphasis will be placed on problem-solving and scientific methods. Credit is not given for ASTR 122 if credit in either ASTR 100 or ASTR 210 has been earned. Students with credit in PHYS 211 are encouraged to take ASTR 210.
This course satisfies the General Education Criteria for: Nat Sci Tech - Phys Sciences

ASTR 310 Computing in Astronomy credit: 3 Hours.
An introduction to the use of computers in astrophysics research. Topics covered include a basic introduction to computing hardware concepts, Unix shell commands, programming in Python, data structures, astronomical libraries, modern software engineering concepts and tools, plotting and visualization of data, and fundamental numerical algorithms. Applications and examples drawn from astrophysics are stressed throughout. Prerequisite: PHYS 211; MATH 220; Credit or concurrent registration in ASTR 210.

ASTR 330 Extraterrestrial Life credit: 3 Hours.
An introduction to the search for extraterrestrial life. Topics include: the solar system; nature and evolution of stars; white dwarfs, neutron stars, and black holes; galaxies, quasars and dark matter; large scale structure of the universe; the Big Bang; and Inflation. Emphasis will be on the physical principles underlying the astronomical phenomena. Prerequisite: PHYS 211.
This course satisfies the General Education Criteria for: Nat Sci Tech - Phys Sciences

ASTR 350 The Big Bang, Black Holes, and the End of the Universe credit: 3 Hours.
Studies the origin, evolution, and eventual fate of the universe, and the scientific tools used to study these issues. Topics include aspects of special and general relativity; curved spacetime; the Big Bang; inflation; primordial element synthesis; the cosmic microwave background; dark matter and the formation of galaxies; observational evidence for dark matter, dark energy, and black holes. Credit is not given for ASTR 350 if credit in ASTR 406 has been earned. Prerequisite: ASTR 100, or ASTR 121, or ASTR 122, or ASTR 210, or consent of instructor.

ASTR 390 Individual Study credit: 0 to 4 Hours.
Individual study at an advanced undergraduate level. May be repeated in separate terms to a maximum of 8 hours. Prerequisite: Consent of advisor and of faculty member who supervises the work.
ASTR 401 Scientific Writing for Astronomy credit: 2 Hours.
Development of journal-style writing skills. Papers written in accordance
with the Astrophysical Journal Manual of Style on topics approved
by the instructor. Emphasis on developing adequate and critical
coverage of the topic, brevity compatible with clarity, and effective
presentation. Proper referencing, footnotes, and bibliography are covered.
2 undergraduate hours. No graduate credit. Prerequisite: Completion
of campus Composition I general education requirement. Concurrent
enrollment in a designated 400-level astronomy course. Not intended for
graduate students.
This course satisfies the General Education Criteria for:
Advanced Composition

ASTR 404 Stellar Astrophysics credit: 3 Hours.
Introduction to astrophysical problems, with emphasis on underlying
physical principles; includes the nature of stars, equations of state,
stellar energy generation, stellar structure and evolution, astrophysical
neutrinos, binary stars, white dwarfs, neutron stars and pulsars, and
novae and supernovae. 3 undergraduate hours. 3 graduate hours.
Prerequisite: PHYS 212; or consent of instructor. Recommended:
ASTR 210, PHYS 213, PHYS 214.

ASTR 405 Planetary Systems credit: 3 Hours.
This course traces, from a physical perspective, the evolution of planetary
systems from star formation in molecular clouds to the emergence
of habitable worlds. Topics include the properties of HII regions and
molecular clouds, gravitational collapse and disk formation, formation
of planetesimals and planets, dynamics of the solar system, physics of
planetary atmospheres, properties of individual planets and their rings
and satellites, detection and characterization of extra-solar planets,
and searches for life in the Solar System and beyond. 3 undergraduate
hours. 3 graduate hours. Prerequisite: PHYS 212 or consent of instructor.
Recommended: ASTR 210, PHYS 213.

ASTR 406 Galaxies and the Universe credit: 3 Hours.
Nature of the Milky Way galaxy: stellar statistics and distributions,
stellar populations, spiral structure, the nucleus and halo. Nature of
ordinary galaxies; galaxies in our Local Group, structure of voids and
superclusters. Nature of peculiar objects: Seyfert galaxies, starburst
galaxies, and quasars. Elementary aspects of physical cosmology. 3
undergraduate hours. 3 graduate hours. Prerequisite: PHYS 212; or
consent of instructor. Recommended: ASTR 210, PHYS 213, PHYS 214.

ASTR 414 Astronomical Techniques credit: 4 Hours.
Introduction to techniques used in modern optical and radio astronomy
with emphasis on the physical and mathematical understanding of
the detection of electromagnetic radiation; includes such topics as
fundamental properties of radio and optical telescopes and the detectors
that are used with telescopes. Lectures and laboratory. 4 undergraduate
hours. 4 graduate hours. Prerequisite: MATH 241 or equivalent;
PHYS 212; or consent of instructor. Recommended: ASTR 210, PHYS 213,
PHYS 214.

ASTR 450 Astrochemistry credit: 4 Hours.
Same as CHEM 450. See CHEM 450.

ASTR 451 Astrochemistry Laboratory credit: 3 or 4 Hours.
Same as CHEM 451. See CHEM 451.