INFORMATION SCIENCES, BS

for the Degree of Bachelor of Science Major in Information Sciences

The Bachelor of Science in Information Sciences (BSIS) prepares students for a wide range of careers within the knowledge economy. In today's technology-centered job market, there is a high demand for information professionals. By earning a BSIS from the School of Information Sciences (iSchool), you will gain a competitive edge. Our interdisciplinary, STEM-designated degree will prepare students for careers in a variety of fields. As a BSIS student, you'll learn how to manage data and other types of information to help organizations achieve their goals. You will become an information technology expert who understands the human perspective, social context, and policy implications.

The BSIS will provide a competitive edge by teaching you how to:

- Design information systems and services
- Organize, manage, and evaluate information for diverse users
- Interpret and use data for real-world application and collaboration

Information Sciences (https://ischool.illinois.edu/degrees-programs/undergraduate/), B.S. Degree website

for the Degree of Bachelor of Science Major in Information Sciences

Minimum required major and supporting course work: Students must earn at least 51 hours in the School of Information Sciences or in approved courses offered by other departments. Students must demonstrate proficiency in at least one programming language.

General education: Students must complete the Campus General Education (https://courses.illinois.edu/gened/DEFAULT/DEFAULT/) requirements.

GPA Requirement: 2.5 - Earn a cumulative grade point average of 2.50 (A = 4.00) in all courses presented for the degree and a cumulative 2.50 grade point average for all courses taken in the School.

Core Curriculum

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours Required in Core Curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 101</td>
<td>Introduction to Information Sciences</td>
<td></td>
</tr>
<tr>
<td>IS 101</td>
<td>Introduction to Information Sciences</td>
<td></td>
</tr>
<tr>
<td>IS 202</td>
<td>Social Aspects Info Tech</td>
<td></td>
</tr>
<tr>
<td>IS 203</td>
<td>Analytical Foundations for Information Problems</td>
<td></td>
</tr>
<tr>
<td>IS 307</td>
<td>Introduction to Database Concepts & Applications</td>
<td>3</td>
</tr>
<tr>
<td>IS 308</td>
<td>or IS 309</td>
<td></td>
</tr>
</tbody>
</table>

School of Information Sciences Electives or approved courses in other departments 30

Additional electives outside of the school and General Education Requirements 21

Hours required for graduation 123

for the Degree of Bachelor of Science Major in Information Sciences

Program Goals

The goals of the program are to:

1. Equip students to be leaders in a knowledge society and innovators in a knowledge economy
2. Educate students for known, emerging, and currently unforeseeable careers in information sciences
3. Provide an interdisciplinary education where studies in fundamentals of information sciences and in application areas are fully integrated
4. Ensure that various upper-division elective pathways of the major share a common core of information sciences knowledge
5. Provide a program with enough flexibility to facilitate transfers into the major at the sophomore level, transfers across colleges at the sophomore and junior level, and transfers from two-year colleges
6. Since information sciences is a rapidly developing field, offer a flexible program that responds quickly to new needs and opportunities, and to new findings and approaches in the information sciences
7. Prepare interested students for graduate study in information sciences and related fields

Program Learning Outcomes

By the end of the program, students will be able to:

1. Understand relationships among people, information, and technology
2. Understand the history, theory, philosophy, and methodologies of the field of information sciences
3. Apply various approaches to research in the information sciences, including social science methods, data and text mining, digital humanities, historical approaches, and others
4. Apply critical analytical skills to information issues
5. Understand fundamental mathematical and programming tools for solving problems of information modeling, expression, and transformation

Information listed in this catalog is current as of 10/2023