COMPUTER SCIENCE + CHEMISTRY, BSLAS

for the degree of Bachelor of Science in Liberal Arts and Sciences Major in Computer Science + Chemistry

Undergraduate Degree Programs in Chemistry

For the Degree of Bachelor of Science in Liberal Arts and Sciences

- Major in Computer Science & Chemistry, BSLAS (p. 1)
- Major in Chemistry (Sciences and Letters) (http://catalog.illinois.edu/undergraduate/las/chemistry-bslas/#degreerequirementstext)
- Major in Chemistry (Sciences and Letters), Chemistry Teaching Concentration (http://catalog.illinois.edu/undergraduate/las/chemistry-bslas/chemistry-teaching/)

For the Degree of Bachelor of Science in Chemistry

- Major in Chemistry (Specialized Curriculum) (http://catalog.illinois.edu/undergraduate/las/chemistry-bs/#degreerequirementstext)
- Major in Chemistry (Specialized Curriculum), Environmental Chemistry Concentration (http://catalog.illinois.edu/undergraduate/las/chemistry-bs/environmental-chemistry/)

for the degree of Bachelor of Science in Liberal Arts and Sciences Major in Computer Science + Chemistry

A Major Plan of Study Form must be completed and submitted to the LAS Student Affairs Office by the beginning of the fifth semester (60-75 hours).

Please visit the computer science advisor as well as the Chemical Sciences advising office.

General education: Students must complete the Campus General Education (https://courses.illinois.edu/) requirements including the campus general education language requirement.

Minimum required major and supporting course work: Normally equates to 66 hours. Twelve hours of 300- and 400-level in the major must be taken on this campus.

Minimum hours required for graduation: 120 hours.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 100</td>
<td>Computer Science Orientation (recommended; CS 100 is an orientation course aimed at first-year students, so students who declare the major after the freshman year are not required to complete it.)</td>
<td>1</td>
</tr>
<tr>
<td>CS 124</td>
<td>Introduction to Computer Science I</td>
<td>3</td>
</tr>
<tr>
<td>CS 128</td>
<td>Introduction to Computer Science II</td>
<td>3</td>
</tr>
<tr>
<td>CS 173</td>
<td>Discrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>CS 225</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>CS 222</td>
<td>Software Design Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

Choose one of the following combinations 8-11

- CS 233 Computer Architecture & CS 341 and System Programming
- OR
 - CS 340 Introduction to Computer Systems & two CS courses at the 400 level above CS 403, excluding CS 421 and CS 491

Choose one of the following: 3

<table>
<thead>
<tr>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 200 Statistical Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 212 Biostatistics</td>
<td></td>
</tr>
<tr>
<td>CS 361 Probability & Statistics for Computer Science</td>
<td>4</td>
</tr>
<tr>
<td>CS 374 Introduction to Algorithms & Models of Computation</td>
<td></td>
</tr>
<tr>
<td>CS 421 Programming Languages & Compilers</td>
<td>3</td>
</tr>
</tbody>
</table>

Mathematics (may also fulfill the General Education Quantitative Reasoning I and II requirements)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221</td>
<td>Calculus I</td>
<td>4-5</td>
</tr>
<tr>
<td>or MATH 220</td>
<td>Calculus</td>
<td></td>
</tr>
<tr>
<td>MATH 225</td>
<td>Introductory Linear Algebra Theory</td>
<td>2 or 3</td>
</tr>
<tr>
<td>or MATH 257</td>
<td>Linear Algebra with Computational Applications</td>
<td></td>
</tr>
<tr>
<td>MATH 231</td>
<td>Calculus II</td>
<td>3</td>
</tr>
</tbody>
</table>

Required Chemistry Coursework - Minimum of 24 hours

Foundation Courses - 12 hours required

Select one of the following (General or Accelerated Chemistry): 8

- CHEM 102 General Chemistry I & CHEM 103 and General Chemistry Lab I & CHEM 104 and General Chemistry II & CHEM 105 and General Chemistry Lab II
- or
- CHEM 202 Accelerated Chemistry I & CHEM 203 and Accelerated Chemistry Lab I & CHEM 204 and Accelerated Chemistry II
- CHEM 232 Elementary Organic Chemistry I or CHEM 236 Fundamental Organic Chem I

Advanced Chemistry Courses - 12 hours

- CHEM 440 Physical Chemistry Principles or CHEM 442 Physical Chemistry I

In consultation with an advisor, choose 8 hours of 300- or 400-level chemistry courses (The following courses may not be used to complete the advanced chemistry hours: CHEM 315, CHEM 397, CHEM 445, CHEM 447, CHEM 492, CHEM 494, CHEM 496, CHEM 497 and CHEM 499; and any course in another unit, such as any BIOL or MCB course.)

By the time of graduation, students will have:

Computer Science:

1. An ability to apply knowledge of computing and mathematics appropriate to the discipline
2. An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution

Information listed in this catalog is current as of 09/2023
3. An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs
4. An ability to function effectively on teams to accomplish a common goal
5. An understanding of professional, ethical, legal, security and social issues and responsibilities
6. An ability to communicate effectively with a range of audiences
7. An ability to analyze the local and global impact of computing on individuals, organizations, and society
8. A recognition of the need for and an ability to engage in continuing professional development
9. An ability to use current techniques, skills, and tools necessary for computing practice
10. An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the trade-offs involved in design choices
11. An ability to apply design and development principles in the construction of software systems of varying complexity

Chemistry:

1. A thorough knowledge of the basic principles of chemistry, including atomic and molecular structure, chemical dynamics and the chemical and physical properties of substances.
2. An exposure to the sub-fields of chemistry, including analytical, inorganic, organic and physical chemistry.
3. The ability to read, evaluate, interpret, and present (via oral and written communication) numerical, chemical and general scientific information and literature.
4. The ability to carry out experiments, use appropriate experimental apparatus effectively, and demonstrate proper laboratory safety skills.

Undergraduate Degree Programs in Chemistry

For the Degree of Bachelor of Science in Liberal Arts and Sciences

- Major in Computer Science & Chemistry, BSLAS (p. 1)
- Major in Chemistry (Sciences and Letters) (http://catalog.illinois.edu/undergraduate/las/chemistry-bslas/#degreerequirementstext)
- Major in Chemistry (Sciences and Letters), Chemistry Teaching Concentration (http://catalog.illinois.edu/undergraduate/las/chemistry-bslas/chemistry-teaching/)

For the Degree of Bachelor of Science in Chemistry

- Major in Chemistry (Specialized Curriculum) (http://catalog.illinois.edu/undergraduate/las/chemistry-bs/#degreerequirementstext)
- Major in Chemistry (Specialized Curriculum), Environmental Chemistry Concentration (http://catalog.illinois.edu/undergraduate/las/chemistry-bs/environmental-chemistry/)

for the degree of Bachelor of Science in Liberal Arts and Sciences Major in Computer Science + Chemistry