AGRICULTURAL AND BIOLOGICAL ENGINEERING

Alan Hansen, Interim Head
338 Agricultural Engineering Sciences Building
304 West Pennsylvania Avenue
PH: (217) 333-3570
http://abe.illinois.edu

The Department of Agricultural and Biological Engineering offers two academic majors through the College of ACES: The five-year combined program in Agricultural and Biological Engineering Sciences and the major in Technical Systems Management. The Department also offers a four-year major in Agricultural and Biological Engineering through the College of Engineering.

- Major in Agricultural and Biological Engineering (http://catalog.illinois.edu/undergraduate/engineer/departments/ag-bio-engin)
- Dual Degree in Agricultural and Biological Engineering/Agricultural and Biological Engineering Sciences (http://catalog.illinois.edu/undergraduate/aces/departments/ag-bio-eng/dual-major-agricultural-biological-engineering-sciences)
- Major in Technical Systems Management (http://catalog.illinois.edu/undergraduate/aces/departments/ag-bio-eng/major-technical-systems-management)
- Minor in Agricultural Safety and Health (http://catalog.illinois.edu/undergraduate/aces/departments/ag-bio-eng/minor-agricultural-safety-health)

ABE Class Schedule (https://courses.illinois.edu/schedule/DEFAULT/DEFAULT/ABE)

Agric Biological Engineering Courses

ABE 100 Intro Agric & Biological Engg credit: 1 Hour.
Introduction to the engineering profession with career opportunities in the agricultural and biological engineering discipline. Concepts necessary for becoming a successful engineer including time management, design concepts, ethics, and teambuilding. Familiarization with laboratories, computer facilities, internships, and other opportunities. Team design experience. Emphasis on technical communication and problem-solving skills as well as career planning.

ABE 141 ABE Principles: Biological credit: 2 Hours.
Principles of biology relevant to agriculture, food, energy, and the environment, including microbiology, biochemistry, genetics, plant and animal systems, and ecosystems. Case studies of engineering applications where these biological principles have been taken into account or leveraged for the purpose of design.

ABE 199 Undergraduate Open Seminar credit: 1 to 5 Hours.
May be repeated to a maximum of 12 hours.

ABE 223 ABE Principles: Machine Syst credit: 2 Hours.
Machinery systems for off-road applications: internal combustion engines; fluid power; tractors, and traction; chemical application; grain harvesting. Prerequisite: One of MATH 220, MATH 221, MATH 234.

ABE 224 ABE Principles: Soil & Water credit: 2 Hours.
Engineering principles and methods of design and management of natural resources and environmental systems; watershed and hydrologic cycle; infiltration and surveying; runoff and erosion; water quality; non-point source pollution. Prerequisite: One of MATH 220, MATH 221, MATH 234.

ABE 225 ABE Principles: Bioenvironment credit: 2 Hours.
Principles of environmental control for biological structures: psychrometrics; mass and heat transfer through buildings; ventilation requirements. Prerequisite: One of MATH 220, MATH 221, MATH 234.

ABE 226 ABE Principles: Bioprocessing credit: 2 Hours.
Principles of bioprocess engineering applied to food and agricultural products: material balances; fluid flow; heat and mass transfers; drying; evaporation; fermentation; distillation; process simulation. Prerequisite: One of MATH 220, MATH 221, MATH 234.

ABE 341 Transport Processes in ABE credit: 3 Hours.
Principles of transport processes involving momentum, heat, and mass as applied to biological systems in agriculture, food, energy, and the environment. Credit is not given for both ABE 341 and CHBE 421. Prerequisite: ABE 223, ABE 224, ABE 225, ABE 226, and PHYS 213.

ABE 361 Off-Road Machine Design credit: 3 Hours.
Design and development concepts of agricultural and industrial machines; analysis and synthesis of tillage, planting, harvesting, chemical application, material handling mechanisms, and precision farming tools. Prerequisite: ABE 223 and TAM 212.

ABE 397 Independent Study credit: 1 to 4 Hours.
Individual research, special problems, thesis, development or design work under the supervision of a member of the faculty. May be repeated to a maximum of 8 hours. Prerequisite: Consent of instructor.

ABE 398 Special Topics credit: 1 to 3 Hours.
Subject offerings of new and developing areas of knowledge in agricultural and biological engineering intended to augment the existing curriculum. See Class Schedule or departmental course information for topics and prerequisites. May be repeated in the same or separate term if topics vary to a maximum of 12 hours.

ABE 425 Engrg Measurement Systems credit: 4 Hours.
Principles of instrumentation systems, including sensing, signal conditioning, computerized data acquisition, test design, data analysis and synthesis. Additional fees may apply. See Class Schedule. 4 undergraduate hours. 4 graduate hours. Credit is not given for both ABE 425 and ME 360. Prerequisite: ECE 205.

ABE 430 Project Management credit: 2 Hours.
Engineering team effectiveness; project definition; assessing related technologies; marketing and business planning related to engineering; budgeting and financial analyses of engineering projects; safety, ethics and environmental considerations; intellectual property; engineering proposal presentation. Same as TSM 430. 2 undergraduate hours. 2 graduate hours.

ABE 436 Renewable Energy Systems credit: 3 or 4 Hours.
Renewable energy sources and applications, including solar, geothermal, wind, and biomass. Renewable energy’s role in reducing air pollution and global climate change. Capstone project to design a system for converting renewable energy into thermal or electrical energy. 3 undergraduate hours. 4 graduate hours. Credit is not given for both ABE 436 and TSM 438. Prerequisite: PHYS 211.

ABE 440 Applied Statistical Methods I credit: 4 Hours.
Same as ANSC 440, CPSC 440, FSHN 440, and NRES 440. See CPSC 440.
ABE 445 Statistical Methods
credit: 4 Hours.
Same as ANSC 445 and NRES 445. See ANSC 445.

ABE 446 Biological Nanoengineering
credit: 3 or 4 Hours.
Nanodevice design through organization of functional biological components; bio-molecular function and bioconjugation techniques in nanotechnology; modulation of biological systems using nanotechnology; issues related to applying biological nanotechnology in food energy, health, and the environment. 3 undergraduate hours. 4 graduate hours. Prerequisite: MCB 150.

ABE 454 Environmental Soil Physics
credit: 3 Hours.
Provides the theoretical basis for understanding and quantifying the physical, hydrological, geotechnical, and thermal properties of soil in relation to environmental processes. Topics include general soil properties as a porous media, particle size, soil structure and aggregation, water retention and potential, flow in saturated soil, flow in an unsaturated soil, soil temperature and heat flow, soil mechanics, infiltration, and soil-plant-water relations. 3 undergraduate hours. 3 graduate hours. Prerequisite: TAM 335 or NRES 201 or consent of instructor.

ABE 455 Erosion and Sediment Control
credit: 2 Hours.
Processes, estimation, and control of soil erosion by water, wind and resultant sedimentation. Upland, in-channel, urban, agricultural, disturbed (both military training and mining), and forested environments. Capstone experience in site planning and design. 2 undergraduate hours. 2 graduate hours. Prerequisite: CEE 350 or NRES 401, CEE 380 or NRES 201.

ABE 456 Land & Water Resources Engrg
credit: 3 or 4 Hours.
Hydrology, hydraulics, design, construction and cost estimating of structures for the conservation and quality control of soil and water resources; relationship of topography, soils, crops, climate, and cultural practices in conservation and quality control of soil and water for agriculture. 3 undergraduate hours. 3 or 4 graduate hours. Prerequisite: Credit or concurrent registration in TAM 335.

ABE 457 NPS Pollution Processes
credit: 2 Hours.
Principles, concepts, and analysis of processes for nonpoint source pollution involving sediment, inorganic and organic chemicals, and microbial pathogens; hydrologic and pollutant interactions, pollutant fate and transport processes from storm water runoff and percolation; impact of pollutant transport on receiving water and ecosystems. 2 undergraduate hours. 2 graduate hours. Prerequisite: ABE 224 or CEE 350.

ABE 458 NPS Pollution Modeling
credit: 2 Hours.
Concepts, principles, and application of modeling for assessment and management of agricultural nonpoint source pollution. Modeling of agroecosystems and land use impacts on hydrologic and water quality response of upland catchments. Model selection, calibration, validation, and application for comparative analysis. Case studies in current watershed management issues, with a focus on agricultural waste and nutrient management, using existing field and watershed nonpoint source pollution models. 2 undergraduate hours. 2 graduate hours. Prerequisite: ABE 457.

ABE 459 Drainage and Water Management
credit: 3 or 4 Hours.
Design, construction, performance, and maintenance of agricultural drainage systems to meet both production and water quality objectives. Modeling drainage systems. Principles of conservation drainage. 3 undergraduate hours. 3 or 4 graduate hours. Prerequisite: Credit or concurrent registration in TAM 335.

ABE 463 Electrohydraulic Systems
credit: 3 Hours.
Engineering principles of electrohydraulic control systems related to off-road vehicles. Basics of fluid power systems, concepts of electrohydraulic systems and controls, analysis and design of electrohydraulic control systems, and applications of electrohydraulic control. Additional fees may apply. See Class Schedule. 3 undergraduate hours. 3 graduate hours. Prerequisite: ECE 110 or both ECE 205 and ECE 206; ME 310 or TAM 335.

ABE 466 Engineering Off-Road Vehicles
credit: 3 Hours.
Design and application of off-road vehicles for farm and construction use; thermodynamics of engines; measurement of power and efficiencies; power transmission and traction; chassis mechanics; operator environment. 3 undergraduate hours. 3 graduate hours. Credit is not given for both ABE 466 and TSM 464. Prerequisite: ME 300.

ABE 469 Industry-Linked Design Project
credit: 4 Hours.
Industry-submitted and sponsored design projects which utilize principles of design, engineering analysis and functional operation of engineering systems. Design teams develop concepts, evaluate alternatives, model and analyze solutions, and build and test a final product. Emphases on communication skills, technical writing, and interaction with industry representatives. 4 undergraduate hours. 4 graduate hours. Prerequisite: One of ABE 361, CHBE 421, TAM 335; or credit or concurrent registration in ME 370. This course satisfies the General Education Criteria for: Advanced Composition

ABE 474 Indoor Environmental Control
credit: 3 or 4 Hours.
Analysis of indoor environments and relationship with humans, animals and plants. Interactions between facilities operation and both human comfort and animal plant production. Psychrometrics, occupant health and comfort, structural heat transfer, heating and cooling loads, and energy and mass balances as related to indoor environment, air properties, and ventilation. 3 or 4 graduate hours. Prerequisite: TAM 335, and ME 300 or CHBE 321, or consent of instructor.

ABE 476 Indoor Air Quality Engineering
credit: 3 Hours.
Principles and applications of indoor air quality. Particle mechanics, gas kinetics, air quality sampling principles and techniques, air cleaning technologies such as filters, cyclones, electrostatic precipitation for indoor environments; ventilation effectiveness for pollutant control. Research or design project. 4 undergraduate hours. 4 graduate hours. Prerequisite: PHYS 213, MATH 285, and TAM 335.

ABE 482 Package Engineering
credit: 3 Hours.
Same as FSHN 469. See FSHN 469.

ABE 483 Engrg Properties of Food Matls
credit: 3 Hours.
Physical properties of foods and biological materials; properties relating to equipment design and the sensing and control of food processes; thermal, electromagnetic radiation, rheological, and other mechanical properties. 3 undergraduate hours. 3 graduate hours. Prerequisite: TAM 251; either CHBE 421 or both ME 330 and TAM 335.

ABE 488 Bioprocessing Biomass for Fuel
credit: 3 Hours.
Engineering and scientific principles governing bioprocessing of biomass for production of ethanol and other fermentation products. Process unit operations; conventional and alternative feed stock materials; recovery of value-added coproducts and other variables involved in producing fuel ethanol; process simulation; economic analysis. 3 undergraduate hours. 3 graduate hours. Prerequisite: CHBE 321 and TAM 335.

Information listed in this catalog is current as of 10/2017
TSM 295 Undergrad Research or Thesis credit: 1 to 4 Hours.
Individual research, special problems, thesis, development and/or design work under the supervision of an appropriate member of the faculty. May be repeated to a maximum of 12 hours. Prerequisite: Sophomore standing, cumulative GPA of 2.5 or above at the time the activity is arranged, and consent of instructor.

TSM 311 Humanity in the Food Web credit: 3 Hours.
The human food web is the complex network of technologies, environments, people, and social institutions that produces, processes, and distributes the world's food supply. Students will study the food webs of the past, present, and future and will explore various human roles, including their own, in the global technology-environment-society-food system. Course topics include domestication, mechanization, urbanization, the green revolution, biotechnology, food safety, the environment, and appropriate technologies for developing countries. Additional fees may apply. See Class Schedule.

This course satisfies the General Education Criteria for:
Advanced Composition
Humanities - Hist Phil

TSM 352 Land and Water Mgt Systems credit: 3 Hours.
Principles of planning, implementing and utilizing land and water practices for Illinois land uses, especially agriculture. Includes laboratory. Prerequisite: Completion of Quantitative Reasoning requirement.

TSM 363 Fluid Power Systems credit: 2 Hours.
Emphasizes basic principles of fluid power systems related to off-road vehicles. Topics include fundamentals of fluid power systems, principles of key fluid power components, and maintenance of fluid power systems. Credit is not given for both TSM 363 and ABE 223.

TSM 371 Residential Housing Design credit: 3 Hours.
Principles and practices in residential housing; space planning, house types, structures, materials, utilities, environmental control, energy conservation, remodeling, and economic influences. Includes laboratory.

TSM 372 Environ Control & HVAC Systems credit: 3 Hours.
Introduction to heating, ventilating, and air-conditioning (HVAC) systems for building environment control. Topics include: psychrometrics, basic calculation of heating and cooling loads, human comfort and ventilation requirements, typical HVAC and control systems.

TSM 381 Grain Drying & Storage Systems credit: 3 Hours.
Grain drying fundamentals, air-moisture relationships, grain drying systems for efficient energy use, fans, grain-handling devices and systems, planning of grain handling systems, grain standards, moisture measurement, grain storage, fungi and insect problems, aeration, processing and milling of corn and soybeans. Includes laboratory.

TSM 396 UG Honors Research or Thesis credit: 1 to 4 Hours.
Individual research, special problems, thesis, development and/or design work under the direction of the Honors advisor. May be repeated to a maximum of 12 hours. Prerequisite: Junior standing, admission to the ACES Honors Program, and consent of instructor.

TSM 421 Ag Safety-Injury Prevention credit: 3 Hours.
Issues associated with agricultural injuries and their prevention. Areas include: agricultural injury situation; injury causation; injury intervention strategies and their applications to agricultural issues; and, specific safety issues in the areas of farm machinery, grain and forage systems, animals, materials handling, electricity, fire safety, special populations, and emergency preparedness. Course Information: 3 undergraduate hours. 3 graduate hours.
TSM 422 Ag Health-Illnesses Prevention credit: 3 Hours.
Overview of occupational illnesses and diseases in the agricultural
industry and its practices. Hazards within agricultural production are
examined and potential hazards to non-farm populations and those
interacting with production personnel are explored. Agricultural industry
practices are summarized and potential human health effects of specific
practices identified. Specific preventative measures are outlined to
reduce exposures and remediate exposure symptoms. Interaction
with health/medical professionals is on-going during the semester to
familiarize students with medical procedures pertinent to agricultural
occupational medicine. 3 undergraduate hours. 3 graduate hours.

TSM 425 Managing Ag Safety Risk credit: 3 Hours.
Management aspects of farm and agriculturally related business safety
and health. Topics include: orientation to farm and agricultural related
business safety and health issues, legal and ethical responsibilities,
liability issues, injury/illness incident investigation, agricultural safety
and health resources, how to approach and organize a safety and
health management plan, and safety and health worker education and
training. Case study approach to devise a safety and health management
plan for an existing farm or agricultural related business. Team work
to emulate development of safety management programs in general
industry. Student exposure through class discussion exercises to
recent agricultural safety and health research studies conducted in
North America and Europe. 3 undergraduate hours. 3 graduate hours.
Prerequisite: Credit or concurrent registration in TSM 421 or TSM 422, or
consent of instructor.

TSM 430 Project Management credit: 2 Hours.
Same as ABE 430. See ABE 430.

TSM 435 Elec Computer Ctrl Sys credit: 3 Hours.
Microcomputer and electrical control applications; electrical
fundamentals; solid-state devices; relays; biosensors; motor types
and characteristics; three-phase power; logic devices; analog/digital
convertors; and interfacing for agricultural control applications. Includes
laboratory. 3 undergraduate hours. 3 graduate hours.

TSM 438 Renewable Energy Applications credit: 3 Hours.
Renewable energy sources and applications, including solar, geothermal,
wind, and biomass. Environmental consequences of energy conversion
including how renewable energy can reduce air pollution and
global climate change. Economics of alternative energy systems. 3
undergraduate hours. 3 graduate hours. Credit is not given for both
TSM 438 and ABE 436. Prerequisite: Junior, senior, or graduate standing
required.

TSM 464 Engine and Tractor Power credit: 3 Hours.
Construction, performance and maintenance of internal combustion
engines, power trains, and hydraulic systems for off-road equipment;
methods and equipment for performance testing; and weight transfer and
traction. Includes laboratory. 3 undergraduate hours. 3 graduate hours.
Credit is not given for both TSM 464 and ABE 466.

TSM 465 Chemical Applications Systems credit: 3 Hours.
Hydraulic principles; liquid application systems including pumps,
controls, and spray nozzles; granular application systems; safe storage,
handling, and disposal of pesticides and fertilizers; federal and state legal
requirements. Includes laboratory. 3 undergraduate hours. 3 graduate
hours.

TSM 467 Precision Agric Technology credit: 3 Hours.
Practices and equipment used in precision agriculture. Global positioning
systems; geographic information systems; mapping; grid sampling of
soil fertility and physical properties; yield monitoring; remote sensing;
variable-rate technologies. 3 undergraduate hours. 3 graduate hours.

TSM 486 Grain Bioprocessing Coproducts credit: 3 Hours.
Bioprocessing of cereals and oilseeds by milling, fermentation and
extraction processes in the production of a wide variety of coproducts
used in animal foods. Includes the effects of the process variables and
bioprocess on coproduct quality and the post-processing of coproducts.
3 undergraduate hours. 3 graduate hours.

TSM 496 Independent Study credit: 1 to 4 Hours.
Individual research, special problems, thesis, development and/or design
work under the supervision of a faculty member. 1 to 4 undergraduate
hours. 1 to 4 graduate hours. May be repeated to a maximum of 6 hours.
Prerequisite: consent of instructor.

TSM 499 Seminar credit: 1 to 3 Hours.
Group discussion or an experimental course on a special topic in
technical systems management. 1 to 3 undergraduate hours. 1 to 3
graduate hours. May be repeated to a maximum of 12 hours.