ASTRONOMY, MS

for the degree of Master of Science in Astronomy

head of the department: Leslie Looney
director of graduate studies: Paul Ricker
overview of admissions & requirements: Astronomy Graduate Admissions (http://www.astro.illinois.edu/academics/graduate/)
overview of grad college admissions & requirements: https://grad.illinois.edu/admissions/apply (https://grad.illinois.edu/admissions/apply/)
college website: https://las.illinois.edu/
department website: https://astro.illinois.edu/
department faculty: 
department office: 103 Astronomy Building, 1002 West Green Street, Urbana, IL 61801
phone: (217) 333-3090
email: astronomy@illinois.edu

The Department of Astronomy offers graduate programs leading to the Master of Science and Doctor of Philosophy degrees. The goal of the graduate program in astronomy is to provide broadly based training in modern astrophysics and astronomy for a small and carefully selected student body. Individually designed programs involving close contact with faculty members are encouraged, and an understanding of fundamental principles and techniques and their applications to research problems of current interest is emphasized. Students are expected to acquire a solid knowledge of modern physics as well as of general astronomy. A major objective is to maintain an exciting intellectual environment in which students can develop their scientific creativity and their enthusiasm for astronomy.

Graduate Degree Programs in Astronomy

Astronomy, MS (p. 1)
Astronomy, PhD (http://catalog.illinois.edu/graduate/las/astronomy-phd/)
optional concentration: Astrochemistry (http://catalog.illinois.edu/graduate/las/concentration/astrochemistry/)

Admission

Admission to the astronomy graduate program requires an outstanding record of accomplishment and clear evidence of considerable academic promise, as judged by undergraduate transcripts, resume (or c.v.), letters of recommendation, personal statement, and strong intellectual achievements. A bachelor's degree or its equivalent in astronomy, physics, chemistry, mathematics, or another related technical field from an accredited college or university in the U.S. or an approved institution of higher learning abroad is required for admission.

A minimum grade point average of 3.0 (A = 4.0) is required for admission. Course preparation in intermediate and advanced undergraduate physics and astronomy are essential. Students are expected to make up deficiencies during the first graduate year.

The GRE General Test and Subject Test in Physics are not required for admission, and most applicants do not provide GRE scores. Scores on the General Test will not be considered at all. Scores on the Physics Test, if provided, will only be used to help interpret physics preparation, and will only be made available to the review committee after the initial screening of applications has been completed. If applicants wish to provide a Physics score, they must ask ETS to send official score reports to Illinois (institution code 1836).

All applicants whose native language is not English are required to submit the results of the TOEFL or IELTS as evidence of English proficiency, as required by Graduate College policy. More information on the English Proficiency Requirement can be found at the Graduate College Admissions Web site (http://www.grad.illinois.edu/admissions/instructions/04c/).

Admission decisions are normally made once a year in the spring. Applications for admission and financial assistance must be received by January 15. In rare circumstances, applicants may be admitted for the spring semester, in addition to the customary fall semester admissions.

See the Astronomy graduate admissions Web site (www.astro.illinois.edu/academics/graduate/) for more information and application materials.

Graduate Teaching Experience

Although teaching is not a general Graduate College requirement, experience in teaching is considered an important part of the graduate experience in this program.

Faculty Research Interests

Research activity in the Department of Astronomy includes observational and theoretical investigations of a wide array of astronomical objects:

- Early-universe cosmology (inflation, particle dark matter, cosmic nucleosynthesis)
- Large-scale structure of the universe (cosmic microwave background, galaxy clusters)
Extragalactic systems (galaxy structure and evolution, interacting galaxies, active galaxies, jets, and quasars)
Interstellar medium (multiple phases, molecular clouds, HII regions, bubbles and superbubbles, planetary nebulae, supernova remnants, magnetic fields, and galactic structure)
Stars (formation, structure and evolution, atmospheres, nucleosynthesis, novae, supernovae, pulsars, and stellar statistics)
Compact objects (black holes, neutron stars, white dwarfs)

Theoretical astrophysics is also a strong research interest among many faculty members in the Department of Astronomy and the Department of Physics. Current activity centers on:

- Astrophysical fluid dynamics, magnetohydrodynamics, and radiation hydrodynamics
- Physics of dense stellar matter
- Accretion phenomena
- High energy and relativistic astrophysics
- Cosmic inflation and structure formation
- Nuclear and particle processes in cosmology and astrophysics
- Black hole physics and astrophysics
- Gravitational lensing
- Gravitational wave phenomena

Facilities and Resources

- The Dark Energy Survey
- The Vera C. Rubin Observatory
- The South Pole Telescope

Astronomy students and faculty successfully compete for time on national facilities. These include ground-based telescopes of the National Radio Astronomy Observatory, such as the Atacama Large Millimeter Telescope and the Very Large Array, and the National Optical Astronomy Observatory telescopes. Illinois research involves many space-based telescopes, including the Hubble, Planck, Spitzer, Herschel, Chandra, and Fermi.

A number of projects in the Department of Astronomy partner with the National Center for Supercomputing Applications (NCSA) at Illinois. This includes development and application of astrophysical simulations such as the FLASH package and general relativistic magnetohydrodynamic codes that provide insight into the nature of structure formation and the physics of black holes. Astronomy faculty also leverage NCSA’s pioneering development of cyberinfrastructure environments to facilitate data transport for the Sloan Digital Sky Survey (SDSS), the Dark Energy Survey, the Square Kilometer Array, and the Vera C. Rubin Observatory’s Legacy Survey of Space and Time. Faculty from NCSA, Astronomy and Physics Departments are also involved in the Center for Astrophysical Surveys (CAPS), applying novel algorithms to the rich large datasets from several major projects including the Sloan Digital Sky Survey (SDSS), the Dark Energy Survey (DES), the Young Supernova Experiment (YSE), the Laser Interferometric Gravitational Wave Observatory (LIGO), the Vera Rubin Observatory (VRO), and the South Pole Telescope (SPT).

Financial Aid

University fellowships are available and may be combined with part-time teaching assistantships. Most resident students are supported for their first two or three years by half-time teaching assistantships. The typical teaching assistant takes two or three graduate courses per semester and spends twenty hours per week handling quiz sections in elementary astronomy courses. Teaching assistantships are responsible positions, and the concomitant duties are considered to be a valuable part of the student’s educational experience. Advanced students may compete for research assistantships offered by faculty members whose research is partially supported by federal grants.