ASTRONOMY, MS

for the degree of Master of Science in Astronomy

head of the department: Leslie Looney
director of graduate studies: Paul Ricker

overview of admissions & requirements: Astronomy Graduate
Admissions (http://www.astro.illinois.edu/academics/graduate/)
overview of grad college admissions & requirements: https://grad.illinois.edu/admissions/apply

college website: https://las.illinois.edu/
department website: https://astro.illinois.edu/
department faculty:
department office: 103 Astronomy Building, 1002 West Green
Street, Urbana, IL 61801
phone: (217) 333-3090
email: astronomy@illinois.edu

The Department of Astronomy offers graduate programs leading to
the Master of Science and Doctor of Philosophy degrees. The goal
of the graduate program in astronomy is to provide broadly based
training in modern astrophysics and astronomy for a small and carefully
selected student body. Individually designed programs involving close
contact with faculty members are encouraged, and an understanding of
fundamental principles and techniques and their applications to research
problems of current interest is emphasized. Students are expected
to acquire a solid knowledge of modern physics as well as of general
astronomy. A major objective is to maintain an exciting intellectual
environment in which students can develop their scientific creativity and
their enthusiasm for astronomy.

Graduate Degree Programs in Astronomy

Astronomy, MS (p. 1)
Astronomy, PhD (http://catalog.illinois.edu/graduate/las/
astronomy-phd/)
optional concentration: Astrochemistry (http://catalog.illinois.edu/
graduate/las/concentration/astrochemistry/)

Admission

Admission to the astronomy graduate program requires an outstanding
record of accomplishment and clear evidence of considerable academic
promise, as judged by undergraduate transcripts, resume (or c.v.),
letters of recommendation, personal statement, and strong intellectual
achievements. A bachelor's degree or its equivalent in astronomy,
physics, chemistry, mathematics, or another related technical field from an
accredited college or university in the U.S. or an approved institution
of higher learning abroad is required for admission.

A minimum grade point average of 3.0 (A = 4.0) is required for admission.
Course preparation in intermediate and advanced undergraduate
physics and astronomy are essential. Students are expected to make up
deficiencies during the first graduate year.

The GRE General Test and Subject Test in Physics are not required for
admission, and most applicants do not provide GRE scores. Scores on
the General Test will not be considered at all. Scores on the Physics Test, if
provided, will only be used to help interpret physics preparation, and will
only be made available to the review committee after the initial screening
of applications has been completed. If applicants wish to provide a

Physics score, they must ask ETS to send official score reports to Illinois
(institution code 1836).

All applicants whose native language is not English are required
to submit the results of the TOEFL or IELTS as evidence of English
proficiency, as required by Graduate College policy. More information
on the English Proficiency Requirement can be found at the Graduate
College Admissions Web site (http://www.grad.illinois.edu/admissions/
instructions/04c/).

Admission decisions are normally made once a year in the spring.
Applications for admission and financial assistance must be received by
January 15. In rare circumstances, applicants may be admitted for the
spring semester, in addition to the customary fall semester admissions.

See the Astronomy graduate admissions Web site
(www.astro.illinois.edu/academics/graduate/) for more information and
application materials.

Graduate Teaching Experience

Although teaching is not a general Graduate College requirement,
experience in teaching is considered an important part of the graduate
experience in this program.

Faculty Research Interests

Research activity in the Department of Astronomy includes observational
and theoretical investigations of a wide array of astronomical objects:

- Early-universe cosmology (inflation, particle dark matter, cosmic
 nucleosynthesis)
- Large-scale structure of the universe (cosmic microwave background,
 galaxy clusters)
- Extragalactic systems (galaxy structure and evolution, interacting
 galaxies, active galaxies, jets, and quasars)
- Interstellar medium (multiple phases, molecular clouds, HII regions,
 bubbles and superbubbles, planetary nebulae, supernova remnants,
 magnetic fields, and galactic structure)
- Stars (formation, structure and evolution, atmospheres,
 nucleosynthesis, novae, supernovae, pulsars, and stellar statistics)
- Compact objects (black holes, neutron stars, white dwarfs)

Theoretical astrophysics is also a strong research interest many faculty
members in the Department of Astronomy and the Department of
Physics. Current activity centers on:

- Astrophysical fluid dynamics, magnetohydrodynamics, and radiation
 hydrodynamics
- Physics of dense stellar matter
- Accretion phenomena
- High energy and relativistic astrophysics
- Cosmic inflation and structure formation
- Nuclear and particle processes in cosmology and astrophysics
- Black hole physics and astrophysics
- Gravitational lensing
- Gravitational wave phenomena

Facilities and Resources

- The Dark Energy Survey
- The Vera C. Rubin Observatory

Information listed in this catalog is current as of 02/2022
• The South Pole Telescope
• Astronomy students and faculty successfully compete for time on national facilities. These include ground-based telescopes of the National Radio Astronomy Observatory, such as the Atacama Large Millimeter Telescope and the Very Large Array, and the National Optical Astronomy Observatory telescopes. Illinois research involves many space-based telescopes, including the Hubble, Planck, Spitzer, Herschel, Chandra, and Fermi.
• A number of projects in the Department of Astronomy partner with the National Center for Supercomputing Applications (NCSA) at Illinois. This includes development and application of astrophysical simulations such as the FLASH package and general relativistic magnetohydrodynamic codes that provide insight into the nature of structure formation and the physics of black holes. Astronomy faculty also leverage NCSA’s pioneering development of cyberinfrastructure environments to facilitate data transport for the Sloan Digital Sky Survey (SDSS), the Dark Energy Survey, the Square Kilometer Array, and the Vera C. Rubin Observatory’s Legacy Survey of Space and Time. Faculty from NCSA, and Astronomy and Physics Departments are also involved in the Center for Astrophysical Surveys (CAPS), applying novel algorithms to the rich large datasets from several major projects including the Sloan Digital Sky Survey (SDSS), the Dark Energy Survey (DES), the Young Supernova Experiment (YSE), the Laser Interferometric Gravitational Wave Observatory (LIGO), the Vera Rubin Observatory (VRO), and the South Pole Telescope (SPT).
• Illinois is the home of the Blue Waters National Petascale Computing Facility, one of the most powerful supercomputers in the world, and the most powerful on a university campus. A portion of Blue Waters time is dedicated to Illinois faculty, and Astronomy students and faculty use Blue Waters for their research.

Financial Aid
University fellowships are available and may be combined with part-time teaching assistantships. Most resident students are supported for their first two or three years by half-time teaching assistantships. The typical teaching assistant takes two or three graduate courses per semester and spends twenty hours per week handling quiz sections in elementary astronomy courses. Teaching assistantships are responsible positions, and the concomitant duties are considered to be a valuable part of the student’s educational experience. Advanced students may compete for research assistantships offered by faculty members whose research is partially supported by federal grants.

For the degree of Master of Science in Astronomy

For additional details and requirements refer to the department’s Graduate Programs (http://www.astro.illinois.edu/academics/graduate/programs/) and the Graduate College Handbook (http://www.grad.illinois.edu/gradhandbook/).

Astronomy, MS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 501</td>
<td>Radiative Processes</td>
<td>4</td>
</tr>
<tr>
<td>ASTR 502</td>
<td>Astrophysical Dynamics</td>
<td>4</td>
</tr>
</tbody>
</table>

Additional formal coursework (excluding thesis research, non-thesis research, and independent study credit hours, e.g., ASTR 599, ASTR 590) 16

Research/Project/Independent Study Hours (e.g. ASTR 590; min/max applied toward degree): 4-8

Based on Placement Exam results, students may be required to complete ASTR 404, ASTR 405, ASTR 406, and/or ASTR 414 during their first year. A maximum of 8 hours of these courses may be applied to the degree (Max. 8) 2

Total Hours 32

Other Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other requirements may overlap</td>
<td></td>
</tr>
<tr>
<td>Of the additional formal coursework, the minimum number of hours in the unit (excluding thesis research, non-thesis research, and independent study credit hours)</td>
<td>8</td>
</tr>
<tr>
<td>Of the additional formal coursework, the minimum number of 500-level hours (excluding thesis research, non-thesis research, and independent study credit hours)</td>
<td>4</td>
</tr>
</tbody>
</table>

1 Research Project (minimum 4 hours)
- The student will complete a research project with an Astronomy Department faculty member (i.e. ASTR 590). A paper reporting the results is required, which must be prepared in scientific journal style and approved by the faculty member.

2 Demonstrated Proficiency in Astronomy (ASTR 404, ASTR 405, ASTR 406 and ASTR 414)
- Students must show proficiency in the four courses by one of the following options:
 - Pass the appropriate section of the placement exam (four sections aligned to the four courses), which is offered at the start of every Fall semester. A student can petition to take the exam once more the following year. The decision on petition approval by the graduate advisor will depend on the student’s background and proficiency plan.
 - Pass the course with a B grade or better.
 - Students who have had an equivalent course at another institution (B grade or better) may petition for those courses to count as proficiency.