Four main activity areas are commonly recognized:

1. Automation: Use of autonomous or semi-autonomous ground and aerial machinery and robots to perform agricultural operations.
2. Data Science in Agriculture: Extracting knowledge from complex agricultural data.
3. Spatial Agriculture: a. Precision agriculture: Use of high-resolution aerial imaging and ground sensors to optimize field management in real-time, with our without autonomy. b. Agricultural intelligence: Using long term climatic, environmental, and performance data for modeling and characterization of locations with geographic information systems.
4. Genomics, Breeding, and Biotechnology: Use of high-throughput molecular and physical analysis, such as sequencing and genotyping technologies, and image-analytics for crop improvement and management.

The common denominator for all these activity areas is collection(sensors), transmission(networks), storage & access (databases), integration & analysis (data science) of large volumes of data from various sources, including rural areas with low bandwidth for data transmission capacity. As the density of data sources and the frequency of data transmissions increase, it becomes increasingly challenging to perform these tasks without advanced computerization.

The Digital Agriculture core curriculum was tailored such that a generalist in digital agriculture would be able to operate in all of these activity areas at a level of basic competence.

Digital agriculture or digitization in agriculture presents a current challenge area in agriculture drawing upon practices such as Precision Agriculture, Digital farming, and advances in biotechnology and genomics, that delivers high-throughput complex data that requires processing and interpretation to become actionable.

Information listed in this catalog is current as of 06/2023
English are required to submit the TOEFL or IELTS results as evidence of English proficiency.

TOEFL or IELTS scores must be less than two years old from the first day of class at the proposed term of entry to be valid.

Applicants should hold a 4-year bachelor’s degree (or equivalent). Applicants whose undergraduate degree is a three-year program may not be eligible for graduate-level admissions consideration at the University of Illinois. Eligibility depends on the country where the applicant received their degree – please see the Graduate College’s list of eligible degrees. The recommended undergraduate GPA for applicants applying is a 3.2/4.0 for the last two years of undergraduate study.

Applications for this Program do not require letters of recommendation. However, they will be considered if included, especially if used to justify experience in place of required coursework or other irregularities.

To succeed in graduate-level C.S. courses required for this Program, candidates must have prerequisite coursework or commensurate experience in object-oriented programming, data structures, algorithms, linear algebra, and statistics/probability. Applicants interested in pursuing automation and data science-related themes in this Program are strongly encouraged to complete courses in these areas at a local university, or via iCAN program, or as non-degree online courses from Campus Graduate Certificate Programs before enrolling to this Program. Applicants who cannot present transcripted grades for the courses mentioned above would be required to pass the Data Structures Proficiency exam to be eligible for admission.

Financial Aid
Students in concentrations under the MEng in Engineering major are not eligible for Board of Trustees (BOT) tuition-waiver generating assistantships at the University of Illinois.

Data Structures Proficiency Exam Details

- The exam is hosted on PrairieLearn (a University of Illinois online assessment platform) and is proctored by ProctorU (an online third-party proctoring service).
- The exam is 3 hours long.
- A grade of B+ on the exam (in addition to a minimum 3.0/4.0 GPA in the last two years of the undergraduate degree) is required for the application to be considered in the admission process.
- A minimum of 30 calendar days’ learning period is required between any two consecutive exam attempts.

for the degree of Master of Engineering in Engineering, Digital Agriculture Concentration (online)

Students pursuing this major must select one of the concentrations below:

- Aerospace Systems Engineering (http://catalog.illinois.edu/graduate/engineering/engineering-meng/railway/)
- Autonomy & Robotics (http://catalog.illinois.edu/graduate/engineering/engineering-meng/autonomy-robotics/)
- Chemical Engineering Leadership (http://catalog.illinois.edu/graduate/engineering/chemical-engineering-leadership-meng/)
- Digital Agriculture (p. 1)

Information listed in this catalog is current as of 06/2023