BIOMEDICAL IMAGE COMPUTING, MS

for the degree of Master of Science in Biomedical Image Computing (oncampus and online)

The M.S. in Biomedical Image Computing blends together the fields of biomedical imaging science and machine learning. Students will receive a rigorous training in imaging systems and analysis, computational imaging, and machine learning, in preparation for an industry career.

Department Research

Bioengineering faculty perform research in the areas of Bio-Imaging at Multi-Scale, Molecular, Cellular and Tissue Engineering, Bio-Micro and Nanotechnology, Computational and Systems Bioengineering, and Synthetic Bioengineering. In addition to Bioengineering faculty, the Department of Bioengineering has more than 50 affiliate faculty (http:// bioengineering.illinois.edu/directory/).

The Department of Bioengineering offers studies leading to the Master of Engineering in Bioengineering (MEng), the Master of Science in Bioengineering (MS), the Master of Science in Biomedical Image Computing (MS in BIC), and the Doctor of Philosophy (PhD) in Bioengineering. The Bioengineering Graduate Program provides students with educational and research experiences that integrate the sciences of biology and medicine with the practices and principles of engineering. For the MS and PhD programs, areas of focus include Bio-Imaging at Multi-Scale, Molecular, Cellular and Tissue Engineering, Bio-Micro and Nanotechnology, Computational and Systems Bioengineering, and Synthetic Bioengineering.

for the degree of Master of Science in Biomedical Image Computing (oncampus and online)

Code	Title	Hours
Required Coursework		
BIOE 483	Biomedical Computed Imaging Systems	4
BIOE 484	Statistical Analysis of Biomedical Images	4
BIOE 485	Computational Mathematics for Machine Learning and Imaging	4
BIOE 486	Applied Deep Learning for Biomedical Imaging	4
BIOE 488	Applied High-Performance Computing for Imaging Science	3
BIOE 489	Regulations, Ethics and Logistics in Biomedical Applications of Machine Learning	4
BIOE 580	Foundations of Imaging Science	4
BIOE 588	Biomedical Image Computing Capstone Project Literature Review	1
BIOE 589	Biomedical Image Computing Capstone Project	4
Choose one of the following:		
BIOE 586	Deep Generative Models in Bioimaging	

	OR		
BIOE 504	Analytical Methods in Bioeng		
BIOE 505	Computational Bioengineering		
BIOE 507	Advanced Bioinstrumentation		
BIOE 597	Individual Study		
CS 547	Deep Learning		
ECE 513	Vector Space Signal Processing		
ECE 534	Random Processes		
ECE 543	Statistical Learning Theory		
ECE 544	Topics in Signal Processing		
ECE 547	Topics in Image Processing		
ECE 549	Computer Vision		
ECE 558	Digital Imaging		
ECE 561	Statistical Inference for Engineers and Data Scientists		
ECE 564	Modern Light Microscopy		
ECE 566	Computational Inference and Learning		
ECE 569	Inverse Problems in Optics		
ECE 580	Optimiz by Vector Space Methds		
Total Hours		36	
Other Requirements			

Hours Code Title Minimum 500-level hours required overall: 12 Minimum GPA: 3.0 Minimum credit hours taken from the University of Illinois at 12 Urbana-Champaign campus: Maximum number of previous University of Illinois at Urbana-12 Champaign graduate-level coursework not applied to any other degree that may be transferred and applied to the major pending department and Graduate College approval. Some elective courses may not be available online. Check the course schedule.

for the degree of Master of Science in Biomedical Image Computing (oncampus and online)

Student learning objectives will be as follows:

- Ability to apply quantitative skills, engineering principles, and computational principles to propose novel and practical solutions to biomedical imaging problems.
- 2. Ability to recognize and understand professional and ethical responsibilities.
- Ability to identify and communicate real-world biomedical imaging problems with bigger vision and offer solutions, as well as their impact, effectively to a diverse audience and stakeholders, both orally and in writing.
- 4. Ability to develop effective leadership skills in order to foster the ability to collaborate and work with a diverse team, which is essential for a career in either academia or industry.

for the degree of Master of Science in Biomedical Image Computing (oncampus and online)

Admission Requirements

Applicants should have a bachelor's degree in an engineering or other quantitative discipline from an accredited college or university. Students should have a minimum grade point average of 3.00 (A=4.00) or equivalent for the last two years of undergraduate study and show evidence of strong quantitative skills and of serious interest in imaging and machine learning through their personal statement. Students in the program do not have automatic admission to the Ph.D. program in any engineering department.

All applicants whose native language is not English are required to submit TOEFL (http://www.toefl.org/) or International English (http:// www.ielts.org/) Language Testing System (IELTS) (http://www.ielts.org/) scores as evidence of English proficiency. Minimum admission requirements (https://grad.illinois.edu/admissions/instructions/04c/) for English proficiency are set by the Graduate College. Students applying to the online program must satisfy the full status admissions requirement.

Applicants may be exempt from the English proficiency requirements if certain criteria (http://grad.illinois.edu/admissions/instructions/04c/) are met. Applicants with lesser scores may still apply. Limited status (http://grad.illinois.edu/admissions/instructions/04c/) is granted for lesser scores and requires enrollment in English as a Second Language (ESL) courses (https://linguistics.illinois.edu/languages/english-second-language/) based on an ESL Placement Test (EPT) taken upon arrival to campus.

Financial Aid

The tuition and fees for the M.S. in Biomedical Image Computing are the standard Graduate and Professional Programs rates for the College of Engineering. Students in the M.S. in Biomedical Image Computing program are not eligible for Board of Trustees (BOT) tuition-waiver generating assistantships at the University of Illinois Urbana-Champaign.

for the degree of Master of Science in Biomedical Image Computing (oncampus and online)

Bioengineering Department

Department Head: Mark Anastasio (maa@illinois.edu) Director of Graduate Studies: Wawrzyniec Dobrucki (dobrucki@illinois.edu) Bioengineering Department website (https://bioengineering.illinois.edu/)

Bioengineering Master of Science in Biomedical Image Computing

Director of Biomedical Image Computing: Fan Lam (fanlam1@illinois.edu)

Biomedical Image Computing Program website (https:// bioengineering.illinois.edu/academics/graduate/msbic/)

Grainger College of Engineering

Grainger College of Engineering website (https://grainger.illinois.edu/)

Admissions

Biomedical Image Computing Program Admissions Requirements (https://bioengineering.illinois.edu/admissions/graduate/programs/ msbic/who-should-apply/)

Graduate College Admissions & Requirements (https://grad.illinois.edu/ admissions/apply/)

Graduate Contact

Graduate Programs Contact: bioe-gradprograms@illinois.edu 1240 Everitt Laboratory, 1406 W Green St Urbana, IL 61801 (217) 300-8066 bioengineering@illinois.edu