FINANCIAL ENGINEERING, MS

for the degree of Master of Science in Financial Engineering

department head (Industrial & Enterprise Systems Engineering): Jeff Shamma
department head (Finance): Louis Chan
interim program director: Liming Feng
overview of admissions requirements: https://msfe.illinois.edu/admissions/requirements.aspx
overview of grad college admissions requirements: https://grad.illinois.edu/admissions/apply (https://grad.illinois.edu/admissions/apply/
program website: http://msfe.illinois.edu
program faculty: https://msfe.illinois.edu/about/faculty
college websites: https://grainger.illinois.edu (https://grainger.illinois.edu/) and https://giesbusiness.illinois.edu
contact: Application Inquiries (msfe-apply@illinois.edu)
address: 3252 Digital Computer Lab, 1304 W Springfield Ave, Urbana, IL 61801
phone: (217) 333-3284
department head (Industrial & Enterprise Systems Engineering): Jeff Shamma
department head (Finance): Louis Chan
interim program director: Liming Feng
overview of admissions requirements: https://msfe.illinois.edu/admissions/requirements.aspx
overview of grad college admissions requirements: https://grad.illinois.edu/admissions/apply (https://grad.illinois.edu/admissions/apply/)
program website: http://msfe.illinois.edu
program faculty: https://msfe.illinois.edu/about/faculty (https://msfe.illinois.edu/about/faculty/)
college websites: https://grainger.illinois.edu (https://grainger.illinois.edu/) and https://giesbusiness.illinois.edu
contact: Application Inquiries (msfe-apply@illinois.edu)
address: 3252 Digital Computer Lab, 1304 W Springfield Ave, Urbana, IL 61801
phone: (217) 333-3284
department head (Industrial & Enterprise Systems Engineering): Jeff Shamma
department head (Finance): Louis Chan
interim program director: Liming Feng
overview of admissions requirements: https://msfe.illinois.edu/admissions/requirements.aspx
overview of grad college admissions requirements: https://grad.illinois.edu/admissions/apply (https://grad.illinois.edu/admissions/apply/)
program website: http://msfe.illinois.edu
program faculty: https://msfe.illinois.edu/about/faculty (https://msfe.illinois.edu/about/faculty/)
college websites: https://grainger.illinois.edu (https://grainger.illinois.edu/) and https://giesbusiness.illinois.edu
contact: Application Inquiries (msfe-apply@illinois.edu)
address: 3252 Digital Computer Lab, 1304 W Springfield Ave, Urbana, IL 61801
phone: (217) 333-3284

Financial Engineering (FE) is the application of quantitative methods to the analysis of financial markets and financial products. The quantitative techniques may include Mathematics, Statistics, Computer Science, Machine Learning, Neural Nets, and generalized Data Analytics. The applications include searching for opportunities as well as deriving solutions to financial problems. All financial markets are a subject for FE, from public exchanges to private over-the-counter markets. Similarly, all financial products, from equities, bonds and derivatives to bitcoins are candidates for quantification. An overarching theme for FE involves balancing reward against techniques for the measurement, management, and mitigation of risk.

Graduate Degree Programs in Financial Engineering

The Master of Science in Financial Engineering (MSFE) degree program is jointly sponsored by the Department of Industrial and Enterprise Systems Engineering (ISE) (https://ise.illinois.edu) in The Grainger College of Engineering and the Department of Finance (https://giesbusiness.illinois.edu/finance/) in the Gies College of Business. Graduates from this program receive the MSFE degree awarded by the Graduate College. The MSFE program complements other graduate programs offered by the sponsoring departments. The Master of Science in Financial Engineering (terminal master's) can be completed in 18 months with an option to extend to 24 months, beginning in August each year. The second and subsequent semesters allow students the flexibility to pursue specialized tracks within the program, such as data analytics and electronic trading. A corporate-sponsored "practicum", provides students opportunities to address real world financial modeling problems and provides access to state-of-the-art analytic tools and software products.

Concentrations
Advanced Analytics in Industrial & Enterprise Systems Engineering (http://catalog.illinois.edu/graduate/engineering/concentration/advanced-analytics-industrial-enterprise-systems-engineering/)
Data Analytics in Finance (http://catalog.illinois.edu/graduate/bus/concentration/finance/data-analytics-finance/)

Admission

Applicants to the MSFE Program will have a Bachelor's degree with one year of calculus, one semester of linear algebra and differential equations, one semester of programming (preferably in C/C++), and one semester of probability and statistics. Knowledge of basic finance and economics is helpful but not necessary. Given its technical emphasis, applicants to this program typically will have completed a Bachelor's degree in an engineering field, mathematics, physics, computer science, or economics that provides sufficient preparation to facilitate a fast-paced, in-depth learning environment.

All applicants are expected to have a minimum grade point average of at least 3.25 (A=4.00) for the last two years of undergraduate study and a 3.50 for any previous graduate work completed. Scores on the Graduate Record Examination (GRE) (http://www.ets.org/) general test are required of all applicants. GMAT (https://www.gmac.com/gmat-other-assessments/about-the-gmat-exam/the-gmat-advantage/) scores will also be considered.

All applicants whose native language is not English are required to submit TOEFL (http://www.toefl.org/) or International English Language Testing System (IELTS) (http://www.ielts.org/) scores as evidence of English proficiency. Minimum admission requirements (https://grad.illinois.edu/admissions/instructions/04c/) are set by the Graduate College. Under certain circumstances applicants may be exempt (https://grad.illinois.edu/admissions/instructions/04c/) from the TOEFL/IELTS requirement.

Covering topics in finance, economics, numerical methods, stochastic calculus, and computer programming, the MSFE is a rigorous, three-semester, 48-credit, resident degree program with a summer internship opportunity. Twelve courses each of 4 graduate credits are required for graduation; they are expected to be taken in sequence in the respective semesters.
For additional details and requirements refer to the program's Web site (http://msfe.illinois.edu/academics/curriculum.aspx) and the Graduate (http://www.grad.illinois.edu/gradhandbook/) College (http://www.grad.illinois.edu/gradhandbook/) Handbook (http://www.grad.illinois.edu/gradhandbook/).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIN 500</td>
<td>Introduction to Finance</td>
<td>4</td>
</tr>
<tr>
<td>FIN 512</td>
<td>Financial Derivatives</td>
<td>4</td>
</tr>
<tr>
<td>FIN 516</td>
<td>Term Structure Models (Course revision from 4 to 2 credit hours)</td>
<td>2</td>
</tr>
<tr>
<td>FIN 553</td>
<td>Machine Learning in Finance</td>
<td>2</td>
</tr>
<tr>
<td>IE 522</td>
<td>Statistical Methods in Finance</td>
<td>4</td>
</tr>
<tr>
<td>IE 523</td>
<td>Financial Computing</td>
<td>4</td>
</tr>
<tr>
<td>IE 524</td>
<td>Optimization in Finance</td>
<td>2</td>
</tr>
<tr>
<td>IE 525</td>
<td>Stochastic Calculus & Numerical Models in Finance</td>
<td>4</td>
</tr>
<tr>
<td>IE 517</td>
<td>Machine Learning in Finance Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Elective Coursework (approved by academic advisor)</td>
<td>16</td>
</tr>
<tr>
<td>FIN 583</td>
<td>Practicum</td>
<td>2</td>
</tr>
<tr>
<td>IE 597</td>
<td>Independent Study</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Hours</td>
<td>48</td>
</tr>
</tbody>
</table>

Other Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>A minimum of 36 credit hours must be taken from the University of Illinois Urbana-Champaign campus.</td>
</tr>
<tr>
<td>Minimum GPA: 2.75</td>
</tr>
</tbody>
</table>