SYSTEMS ENGINEERING AND DESIGN (SE)

SE Class Schedule (https://courses.illinois.edu/schedule/DEFAULT/DEFAULT/SE)

Courses

SE 100 Introduction to ISE credit: 1 Hour. (https://courses.illinois.edu/schedule/terms/SE/100)
Overview of the engineering profession, the Industrial & Enterprise Systems Engineering Department, and the curricula in Industrial Engineering and Systems Engineering and Design.

SE 101 Engineering Graphics & Design credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/SE/101)
Computer-aided design (CAD) software modeling of parts and assemblies. Parametric and non-parametric solid, surface, and wireframe models. Part editing and two-dimensional documentation of models. Planar projection theory, including sketching of perspective, isometric, multiview, auxiliary, and section views. Spatial visualization exercises. Dimensioning guidelines, tolerancing techniques. Team design project. Credit is not given for both SE 101 and ME 170.

SE 199 Undergraduate Open Seminar credit: 1 to 5 Hours. (https://courses.illinois.edu/schedule/terms/SE/199)
Undergraduate Open Seminar. May be repeated.

SE 261 Business Side of Engineering credit: 1 or 2 Hours. (https://courses.illinois.edu/schedule/terms/SE/261)
Important elements and metrics of business and contemporary engineering economics: wealth creation, cash flow diagrams, internal rate of return, net present value, breakeven analysis, companies, corporations, profits, prices, balance sheets, income statements, and the basics of business plan writing. Particular emphasis is given to preparation for the economic analysis component of engineering practice.

SE 290 ISE Undergraduate Seminar credit: 0 Hours. (https://courses.illinois.edu/schedule/terms/SE/290)
Lecture-discussion series by department faculty and visiting professional engineers addressing ethics, professional registration, the role of technical societies, and the relation of engineering to such disciplines as economics, sociology, and government. Approved for Letter and S/U grading.

SE 297 Independent Study credit: 1 to 4 Hours. (https://courses.illinois.edu/schedule/terms/SE/297)
Individual investigations of any phase of Systems Engineering and Design selected by the students and approved by the department. May be repeated. Prerequisite: Consent of instructor.

SE 298 Special Topics credit: 1 to 4 Hours. (https://courses.illinois.edu/schedule/terms/SE/298)
Subject offerings of new and developing areas of knowledge in general engineering intended to augment the existing curriculum. See Class Schedule or departmental course information for topics and prerequisites.

SE 310 Design of Structures and Mechanisms credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/SE/310)
Fundamental concepts in the classical and computer-based analysis and design of structural and machine components and assemblies. External loads, internal forces, and displacements in statically determinate and indeterminate configurations: kinematics of linkages, gears, and cams; static forces in machines. Prerequisite: CS 101, TAM 212, and TAM 251. Credit or concurrent enrollment in MATH 415.

SE 311 Engineering Design Analysis credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/SE/311)
Stress-strain conditions; analytical and numerical (CAD) solution techniques; analysis of various engineering materials and configurations as applied to the development and application of design analysis criteria. Prerequisite: SE 310; concurrent registration in SE 312.

SE 312 Instrumentation and Test Lab credit: 1 Hour. (https://courses.illinois.edu/schedule/terms/SE/312)
Preparation for experimental projects; mechanical and electrical instruments; mechanical testing of materials; experimental stress analysis and photoelastic methods. Prerequisite: SE 310; concurrent registration in SE 311.

SE 320 Control Systems credit: 4 Hours. (https://courses.illinois.edu/schedule/terms/SE/320)
Fundamental control systems and control systems technology. Sensors, actuators, modeling of physical systems, design and implementation of feedback controllers; operational techniques used in describing, analyzing and designing linear continuous systems; Laplace transforms; response via transfer functions; stability; performance specifications; controller design via transfer functions; frequency response; simple nonlinearities. Credit is not given for both SE 320 and either AE 353 or ME 340. Prerequisite: CS 101, MATH 285, and TAM 212; credit or concurrent registration in ECE 211.

SE 361 Emotional Intelligence Skills credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/SE/361)
Understanding emotions in ourselves and others. Assessment and improvement of interpersonal skills and emotional intelligence competencies including self-regulation, motivation, empathetic listening, communication, influence collaboration and cooperation, conflict management, leadership, teamwork, and managing change. Includes one Saturday laboratory session.

SE 397 Independent Study credit: 1 to 4 Hours. (https://courses.illinois.edu/schedule/terms/SE/397)
Individual investigations or studies of any phase of General Engineering selected by the students and approved by the department. May be repeated in same term. Prerequisite: Consent of instructor.

SE 398 Special Topics credit: 1 to 4 Hours. (https://courses.illinois.edu/schedule/terms/SE/398)
Subject offerings of new and developing areas of knowledge in general engineering intended to augment the existing curriculum. See Class Schedule or departmental course information for topics and prerequisites.

SE 400 Engineering Law credit: 3 or 4 Hours. (https://courses.illinois.edu/schedule/terms/SE/400)
Nature and development of the legal system; legal rights and duties important to engineers in their professions; contracts, uniform commercial code and sales of goods, torts, agency, worker’s compensation, labor law, property, environmental law, intellectual property. 3 undergraduate hours. 4 graduate hours. Prerequisite: RHET 105.
SE 402 Comp-Aided Product Realization credit: 3 or 4 Hours.
Computer-aided design, analysis, and prototyping tools used in the
produce development process. Principles of computer graphics and
geometric modeling, including transformations, coordinate systems,
parametric solid modeling, spline curves, and surface modeling. Finite
element and kinematics analyses. Rapid prototyping, product dissection,
CAD-CAM-CAE operability issues, and CAD collaboration tools. 3
undergraduate hours. 3 or 4 graduate hours. Prerequisite: SE 101 and
SE 311.

SE 410 Component Design credit: 3 Hours.
Design of basic engineering components: structural members, machine
parts, and connections. Principles applied include: material failure (yield,
fracture, fatigue); buckling and other instabilities; design reliability;
analytical simulation. 3 undergraduate hours. No graduate credit.
Prerequisite: SE 311 and SE 320.

SE 411 Reliability Engineering credit: 3 or 4 Hours.
Concepts in engineering design, testing, and management for highly
reliable components and systems. 3 undergraduate hours. 3 or 4
graduate hours. Prerequisite: IE 300.

SE 412 Nondestructive Evaluation credit: 3 or 4 Hours.
Nondestructive Evaluation (NDE) principles and the role of NDE in design,
manufacturing, and maintenance. Primary Nondestructive Testing and
Evaluation (NDT&E) techniques, introduced from the fundamental laws
of physics, including visual, ultrasonic, acoustic emission, acousto-
ultrasonic, radiology, electro-magnetic, eddy-current, penetrant, thermal,
and holographic. Industrial applications of probability of flaw detection,
material properties characterization, impact and fatigue damage
evaluation, adhesion, etc. Current literature. 3 or 4 undergraduate hours. 3
or 4 graduate hours. Prerequisite: CEE 300.

SE 413 Engineering Design Optimization credit: 3 Hours.
Application of optimization techniques to engineering design problems.
Emphasis on problem formulation, including applications in structural,
mechanical, and other design domains. Important theoretical results
and numerical optimization methods. Matlab programming assignments
develop software for solving nonlinear mathematical programming
problems. 3 undergraduate hours. 3 graduate hours. Prerequisite: MATH 241 and MATH 415.

SE 420 Digital Control Systems credit: 4 Hours.
Theory and techniques for control of dynamic processes by digital
computer; linear discrete systems, digital filters, sampling signal
reconstruction, digital design, state space methods, computers, state
estimators, and laboratory techniques. 4 undergraduate hours. 4
graduate hours. Prerequisite: SE 320.

SE 422 Robot Dynamics and Control credit: 4 Hours.
Fundamental concepts and analytical methods for analysis and design of
robot systems. Laboratory experiments complement theoretical
development. Same as ECE 489 and ME 446. 4 undergraduate hours. 4
graduate hours. Prerequisite: SE 320. Recommended: ECE 470.

SE 423 Mechatronics credit: 3 Hours.
Mechatronics concepts and practice: computer interfacing of physical
devices (sensors, actuators); data acquisition; real time programming
and real time control; human-machine interfaces; design principles of
mechatronics in manufacturing systems and in consumer systems. 3
undergraduate hours. 3 graduate hours. Prerequisite: SE 320.

SE 424 State Space Design for Control credit: 3 Hours.
Design methods; time domain modeling; trajectories and phase plane
analysis; similarity transforms; controllability and observability; pole
placement and observers; linear quadratic optimal control; Lyapunov
stability and describing functions; simulation. 3 undergraduate hours. 3
graduate hours. Prerequisite: SE 320 and MATH 415.

SE 450 Decision Analysis I credit: 3 or 4 Hours.
Rules of thought that transform complex decision situations into simpler
one where the course of action is clear. Practical application of decision
analysis in large organizations; methods to generate insights into real-
life decision problems, avoid the common pitfalls in decision processes,
and overcome the possible barriers to implementing a high-quality
decision-making process for individual and organizational decision
making; graphical representations of decision problems such as decision
diagrams and utility diagrams. 3 or 4 undergraduate hours. 3 or 4
graduate hours. Prerequisite: IE 300.

SE 462 Leading Sustainable Change credit: 3 Hours.
Theories and process of change; systems thinking concerning change
consequences; building coalitions and communities to support change;
implementing and managing projects effectively. Processes to plan,
implement, manage, and sustain change with an organization through
alignment of change strategies with organizational and individual
concerns. 3 undergraduate hours. 3 graduate hours.

SE 494 Senior Engineering Project I credit: 3 Hours.
Senior engineering project - team component. Student teams of three
or four, guided by faculty advisors, develop solutions to real-world
engineering problems provided by industry-partnering companies,
subject to realistic constraints and supported by economic analyses and
recommendations for implementation. Prototype solutions fabricated
where practical. Multiple reports and presentations throughout the term.
Several trips to company typical. Common project grade for all team
members. SE 494 and SE 495 taken concurrently fulfill the Advanced
Composition Requirement. Approval of the department is required to
register. 3 undergraduate hours. No graduate credit. Prerequisite: SE 261,
SE 390 and; SE 311, IE 300, IE 310, and TAM 335; or IE 310, IE 311, and
IE Technical Elective; credit or concurrent registration in a SE Design
Elective and IE Engineering Science Elective. Must enroll concurrently in
SE 495.

This course satisfies the General Education Criteria for:
Advanced Composition

SE 495 Senior Engineering Project II credit: 2 Hours.
Adjunct to SE 494. Senior engineering project – individual component.
Individual grade for each team member. SE 494 and SE 495 taken
concurrently fulfill the Advanced Composition Requirement. 2
undergraduate hours. No graduate credit. Prerequisite: Concurrent
registration in SE 494.

This course satisfies the General Education Criteria for:
Advanced Composition

Information listed in this catalog is current as of 05/2018
SE 497 Independent Study credit: 0 to 4 Hours. (https://courses.illinois.edu/schedule/terms/SE/497)
Advanced problems related to General Engineering. 0 to 4 undergraduate hours. 0 to 4 graduate hours. Approved for Letter and S/U grading. May be repeated in same term. Prerequisite: Consent of instructor.

SE 498 Special Topics credit: 1 to 4 Hours. (https://courses.illinois.edu/schedule/terms/SE/498)
Subject offerings of new and developing areas of knowledge in general engineering intended to augment the existing curriculum. See Class Schedule or departmental course information for topics and prerequisites. 1 to 4 undergraduate hours. 1 to 4 graduate hours.

SE 520 Analysis of Nonlinear Systems credit: 4 Hours. (https://courses.illinois.edu/schedule/terms/SE/520)
Modeling, analysis, control, and performance evaluation of discrete event dynamic systems (DEDS), which are characterized by state changes only at discrete points in time in response to the occurrence of particular events. Discrete-state and discrete-event models decidability; computational issues, forbidden-state problems, forbidden-string problems, enforcing safety and liveness properties via supervision; generalized semi-Markov processes, sensitivity analysis via likelihood ratio and infinitesimal perturbation methods. 3 or 4 graduate hours. No professional credit. Prerequisite: CS 173 or MATH 213; CS 225; MATH 415; MATH 461.

SE 521 Multivariable Control Design credit: 4 Hours. (https://courses.illinois.edu/schedule/terms/SE/521)
Same as AE 555. See AE 555.

SE 523 Discrete Event Dynamic Systems credit: 3 or 4 Hours. (https://courses.illinois.edu/schedule/terms/SE/523)
Identification and building of mathematical and computational models directly from data. Systems and model types, such as state-space and distributed-parameter; parametric estimation methods, such as regression and least-squares recent subspace identification methods; data preprocessing techniques; model validation methods. Assignment applications to a wide range of dynamical systems, including biological, electro-mechanical, and economic. 4 graduate hours. No professional credit. Prerequisite: SE 424 and IE 300.

SE 524 Data-Based Systems Modeling credit: 4 Hours. (https://courses.illinois.edu/schedule/terms/SE/524)
Identification of building of mathematical and computational models from data. Systems and model types, such as state-space and distributed-parameter; parametric estimation methods, such as regression and least-squares recent subspace identification methods; data preprocessing techniques; model validation methods. Assignment applications to a wide range of dynamical systems, including biological, electro-mechanical, and economic. 4 graduate hours. No professional credit. Prerequisite: SE 424 and IE 300.

SE 525 Control of Complex Systems credit: 4 Hours. (https://courses.illinois.edu/schedule/terms/SE/525)
Control methodologies for complex (i.e., interconnected) dynamic systems. A unified framework based on the vector Lyapunov functions concept is used to examine various methodologies: decentralized overlapping control; optimal control of interconnected systems; multi-player differential game theory; decentralized optimization and its link with the multi-criteria optimization. Illustrative examples in areas such as control of groups of unmanned vehicles, control of power systems, and coverage control. 4 graduate hours. No professional credit. Prerequisite: SE 424.

SE 530 Multiattribute Decision Making credit: 4 Hours. (https://courses.illinois.edu/schedule/terms/SE/530)
Tools for subjective multiple attribute decision making when present or future states of nature are uncertain. Exploration of current research in developing computer aids to decision making. Issues in descriptive versus normative approaches in the context of the interface between operations research and artificial intelligence. Multiattribute utility analysis from theoretical foundations through assessment procedures, practice, and pitfalls of potential cognitive bases. 4 graduate hours. No professional credit. Prerequisite: CEE 202 or IE 300.

SE 550 Decision Analysis II credit: 3 or 4 Hours. (https://courses.illinois.edu/schedule/terms/SE/550)
Continuation of SE 450. Fundamental requirements of a decision-making system; comparison of different decision-making methods; "paradoxes" in decision making; foundations and history of probability as a degree of belief, Bayesian vs. classical statistics; entropy of a random variable; experimentation and optimal stopping; invariance formulations in utility and probability; one-switch preferences; graph-based methods to incorporate dependence in multiattribute utility functions. 3 or 4 graduate hours. No professional credit. Prerequisite: SE 450.

SE 590 Seminar credit: 0 Hours. (https://courses.illinois.edu/schedule/terms/SE/590)
Presentations by graduate students, staff, and guest lecturers of current topics in research and development in General Engineering. 0 graduate hours. No professional credit. Approved for Letter and S/U grading. May be repeated. Required of all graduate students each term.

SE 594 Project Design credit: 1 to 8 Hours. (https://courses.illinois.edu/schedule/terms/SE/594)
Engineering design projects emphasizing advanced engineering analysis, synthesis, optimization, and engineering economics. 1 to 8 graduate hours. No professional credit. May be repeated to a maximum of 8 hours for credit toward the Master’s degree.

SE 597 Independent Study credit: 1 to 4 Hours. (https://courses.illinois.edu/schedule/terms/SE/597)
Advanced problems related to General Engineering. 1 to 4 graduate hours. No professional credit. May be repeated. Prerequisite: Consent of instructor.

SE 598 Special Topics credit: 1 to 4 Hours. (https://courses.illinois.edu/schedule/terms/SE/598)
Subject offerings of new and developing areas of knowledge in general engineering intended to augment the existing curriculum. See Class Schedule or departmental course information for topics and prerequisites. 1 to 4 graduate hours. No professional credit. May be repeated in the same or separate terms if topics vary to a maximum of 12 hours.

SE 599 Thesis Research credit: 0 to 16 Hours. (https://courses.illinois.edu/schedule/terms/SE/599)
The graduate student works on a thesis research project on a topic of the dissertation. The student and advisor together design the research project and requirements. 0 to 16 graduate hours. No professional credit. Approved for S/U grading only. May be repeated to a maximum of 16 hours for credit toward the Master’s or PhD degree.