Industrial Engineering (IE)

IE Class Schedule

Courses

IE 297   Independent Study   credit: 1 to 4 Hours.

Individual investigations of any phase of Industrial Engineering. May be repeated in separate terms. Prerequisite: Consent of instructor.

IE 300   Analysis of Data   credit: 3 Hours.

Nature of probabilistic models for observed data; discrete and continuous distribution function models; inferences on universe parameters based on sample values; control charts, acceptance sampling, and measurement theory. Credit is not given for both IE 300 and CEE 202. Prerequisite: MATH 241.

IE 310   Operations Research   credit: 3 Hours.

Deterministic and stochastic models in operations research. Linear programming, integer programming, network models and nonlinear programming, review of basic probability, Bernoulli processes, Markov chains, Markov processes, and queuing theory. Credit is not given for both IE 310 and CEE 201. Prerequisite: Credit or concurrent registration in MATH 415.

IE 311   Operations Research Lab   credit: 1 Hour.

Applications of OR models with the use of software tools. Prerequisite: Concurrent registration in IE 310.

IE 330   Industrial Quality Control   credit: 3 Hours.

Contemporary concepts and methods for quality and productivity design and improvement; philosophies of Deming, Taguchi, and others leading the quality management and engineering movement; Shewhart's methods for statistical process control; process capability analysis; statistical methods for tolerance assessment; process control methods employing attribute data; design of experiments, concepts, and methods. Prerequisite: IE 300.

IE 340   Human Factors   credit: 4 Hours.

Introduction to human factors, ergonomics, engineering psychology, history of ergonomics, human-machine relations, displays and controls, human-computer interaction, industrial and aviation systems, physiology of work and anthropometrics, cognitive ergonomics, human reliability, human as manual controller, human-machine systems design, prototyping, professional practice and ethics, laboratory exercises. Same as PSYC 358. Prerequisite: PSYC 100, PSYC 103, or consent of instructor.

IE 360   Facilities Planning and Design   credit: 3 Hours.

Facility planning, plant layout design, and materials handling analysis; determination of facilities requirements, site selection, materials flow, use of analytical and computerized techniques including simulation, and applications to areas such as manufacturing, warehousing, and office planning. Prerequisite: IE 310.

IE 361   Production Planning & Control   credit: 3 Hours.

Scope of production systems and activities involved in their design, establishment, management, operation, and maintenance; mathematical and computer models for planning and control of facilities, human resources, projects, products, material, and information in production systems. Prerequisite: IE 310.

IE 397   Independent Study   credit: 1 to 4 Hours.

Individual investigations or studies of any phase of Industrial Engineering. May be repeated in separate terms. Prerequisite: Consent of instructor.

IE 398   Special Topics   credit: 1 to 4 Hours.

Subject offerings of new and developing areas of knowledge in industrial engineering intended to augment the existing curriculum. See Class Schedule or departmental course information for topics and prerequisites. May be repeated in the same or separate terms if topics vary.

IE 400   Design & Anlys of Experiments   credit: 3 or 4 Hours.

Concepts and methods of design of experiments for quality design, improvement and control. Simple comparative experiments, including concepts of randomization and blocking, and analysis of variance techniques; factorial and fractional factorial designs; Taguchi's concepts and methods; second-order designs; response surface methodology. Engineering applications and case studies. 3 undergraduate hours. 3 or 4 graduate hours. Prerequisite: IE 300.

IE 410   Stochastic Processes & Applic   credit: 3 or 4 Hours.

Modeling and analysis of stochastic processes. Transient and steady-state behavior of continuous-time Markov chains; renewal processes; models of queuing systems (birth-and-death models, embedded-Markov-chain models, queuing networks); reliability models; inventory models. Familiarity with discrete-time Markov chains, Poisson processes, and birth-and-death processes is assumed. Same as CS 481. 3 undergraduate hours. 4 graduate hours. Prerequisite: IE 310.

IE 411   Optimization of Large Systems   credit: 3 or 4 Hours.

Practical methods of optimization of large-scale linear systems including extreme point algorithms, duality theory, parametric linear programming, generalized upper bounding technique, price-directive and resource-directive decomposition techniques, Lagrangian duality, Karmarkar's algorithm, applications in engineering systems, and use of state-of-the-art computer codes. 3 undergraduate hours. 3 or 4 graduate hours. Prerequisite: IE 310 and MATH 415.

IE 412   OR Models for Mfg Systems   credit: 3 or 4 Hours.

Operations research techniques applied to problems in manufacturing and distribution. Single and multi-stage lot sizing problems, scheduling and sequencing problems, and performance evaluation of manufacturing systems. 3 undergraduate hours. 3 or 4 graduate hours. Prerequisite: IE 310.

IE 413   Simulation   credit: 3 OR 4 Hours.

Use of discrete-event simulation in modeling and analysis of complex systems. Data structures and event-list management; verification and validation of simulation models; input modeling, including selection of probability distributions and random variate generation; statistical analysis of output data. Same as CS 482. 3 undergraduate hours. 4 graduate hours. Prerequisite: CS 101 and IE 310.

IE 420   Financial Engineering   credit: 3 or 4 Hours.

Introduction to the theory and practice of financial engineering: basics of derivative securities and risk management; Markowitz portfolio theory and capital asset pricing model; interest rate and bonds; forward and futures contracts, hedging using futures contracts; option contracts and arbitrage relationship; binomial model, no-arbitrage pricing, risk-neutral pricing, and American options pricing; Brownian motion, Black-Scholes-Merton model, delta hedging, Greek letters, implied volatility, and volatility smile. 3 undergraduate hours. 4 graduate hours. Prerequisite: IE 300.

IE 430   Economic Found of Quality Syst   credit: 3 or 4 Hours.

Total quality systems for planning, developing, and manufacturing world-class products. Economic foundations of total quality. Product value, cost, pricing, environmental quality, activity-based costing, design for assembly, organization structure, lead time, innovation, Taguchi methods, simulation-based significance testing, Strategic Quality Deployment, statistical process control, and conjoint analysis. 3 undergraduate hours. 3 or 4 graduate hours. Prerequisite: IE 300.

IE 431   Design for Six Sigma   credit: 3 Hours.

Quality Engineering principles and the Six Sigma Define-Measure-Analyze-Improve-Control (DMAIC) process. Application of concepts and methods of statistical process control, designed experiments, and measurement systems analysis to cases of quality and productivity improvement; application of the fundamentals of quality engineering and the Six Sigma to areas of produce development, service enterprise, and manufacturing processes. 3 undergraduate hours. 3 graduate hours. Prerequisite: IE 300.

IE 497   Independent Study   credit: 1 to 4 Hours.

Independent study of advanced problems related to industrial engineering. 1 to 4 undergraduate hours. 1 to 4 graduate hours. May be repeated. Prerequisite: Consent of instructor.

IE 498   Special Topics   credit: 1 to 4 Hours.

Subject offerings of new and developing areas of knowledge in industrial engineering intended to augment the existing curriculum. See Class Schedule or departmental course information for topics and prerequisites. 1 to 4 undergraduate hours. 1 to 4 graduate hours. May be repeated in the same or separate terms if topics vary to a maximum of 9 hours.

IE 510   Applied Nonlinear Programming   credit: 4 Hours.

Optimization of nonlinear systems; survey of classical methods and concepts such as the Lagrangian method, the Jacobian method, and Kuhn-Tucker conditions; modern algorithms; numerical methods for digital computers; applications in engineering design; use of state-of-the-art computer codes. Prerequisite: IE 310.

IE 511   Integer Programming   credit: 4 Hours.

Optimization of linear systems involving integer variables and discrete alternatives. Modeling; computational complexity; matroids; branch and bound methods; Langrangian and surrograte duality; cutting plane methods and polyhedral theory; special structured problems such as knapsack, set packing and covering, and traveling salesman. Prerequisite: IE 411 or MATH 482.

IE 512   Network Analysis of Systems   credit: 4 Hours.

Basic concepts, theories, and techniques of systems analysis, including modeling of large scale systems, forecasting, planning, control, and information handling; modeling of systems with network techniques, including distance, flow, and project networks; advanced network topics such as out-of-kilter algorithm and project resource analysis. Prerequisite: IE 361 or CEE 201.

IE 513   Optimal System Design   credit: 4 Hours.

Fundamental theories for optimal product realization: (1) product planning-demand modeling, customers' preference analysis, and profit modeling under uncertainty; (2) product design-fundamental of engineering optimization theory; (3) product development-analytical problem formulation to achieve the performance targets assigned at the enterprise level and the engineering design level. Core components of modeling, solving, and validating optimization models using quantitative mathematical criteria. Individual or group term project. Prerequisite: IE 310.

IE 515   Stochastic Simulation   credit: 4 Hours.

Random variable generation; sample path generation; variance reduction; simulation optimization; introduction to Sequential Monte Carlo and MCMC; applications in finance. Prerequisite: IE 410 and STAT 410.

IE 520   Variational Inequalities   credit: 4 Hours.

Finite dimensional variational inequality and complementarity problems; characterization of solutions; nonsmooth Newton methods; interior-point methods; projected gradient schemes; applications of variational inequalities in game theory. Prerequisite: One of ECE 490, IE 510, IE 521, MATH 484.

IE 521   Convex Optimization   credit: 4 Hours.

Finite dimensional convex optimization problems; characterization of optimal solutions; iterative algorithms for differentiable and nondifferentiable problems; distributed optimization algorithms; robust problems and solutions; applications of convex optimization models. Prerequisite: ECE 490 or IE 411; MATH 415; MATH 444.

IE 522   Statistical Methods in Finance   credit: 4 Hours.

Methods of statistical modeling of signals and systems with an emphasis on finance applications. Review of linear algebra, probability theory, and spectral analysis; Linear Time Invariant (LTI) and ARX models; least-squares, maximum-likelihood, non-parametric, and frequency-domain methods; convergence, consistency and identifiability of linear models; asymptotic distribution of parameter estimates; techniques of model validation; Principle Component Analysis (PCA) for dimension reduction; ARCH and GARCH processes and their related models; implementation, application, and case-studies of recursive identification; Monte Carlo simulation. Credit is not given for both IE 522 and GE 524. Prerequisite: MATH 415.

IE 523   Financial Computing   credit: 4 Hours.

Visual Basic (VB) types and loops, macros, arrays, and objects; C++ structures, classes, overloading, inheritance, and I/O; C++ standard libraries; financial computing case studies; illustrations of financial engineering topics using VB and illustrations of the same topics for financial markets using .NET. Prerequisite: CS 225.

IE 524   Optimization in Finance   credit: 4 Hours.

Basic optimization models, theory and methods for financial engineering including linear, quadratic, nonlinear, dynamic integer, and stochastic programming; applications to portfolio selection, index fund tracking, asset management, arbitrage detection, option pricing and risk management; optimization software for classes of optimization problems. Projects requiring building optimization models based on financial market data and solutions using optimization solvers. Prerequisite: FIN 500 and MATH 415.

IE 525   Numerical Methods in Finance   credit: 4 Hours.

Numerical methods of the pricing and risk management of financial derivatives: Monte Carlo simulation; variance reduction techniques; quasi-Monte Carlo methods; finite difference methods for partial differential equations; time discretization schemes; free boundary problems for American options. Prerequisite: FIN 500.

IE 526   Stochastic Calculus in Finance   credit: 4 Hours.

Stochastic calculus approach to the pricing and risk management of derivative securities; no arbitrage pricing; Brownian motion; stochastic calculus; the Black-Scholes-Merton mode; risk neutral valuation; Feynman-Kac theorem; transform methods; exotic derivatives; change of numeraire; term structure interest rate mode; stochastic volatility and jump models. Prerequisite: IE 525.

IE 527   MSFE Professional Development   credit: 1 Hour.

This course is required to encourage participation in professional development activities. Students will be required to be in attendance for at least 70% of the Practitioner Speaker Series in addition to other sanctioned MSFE Events. The Practitioner Speaker Series is an essential part of the MSFE curriculum. It allows firsthand interaction with Quantitative Practitioners. Exposure to insights on how the financial world is changing; regarding new products and needs, evolving data and information systems, and much more. Other events might include but are not limited to special seminars, workshops and conversation groups. 1 graduate hour. No professional credit. Approved for S/U grading only. May be repeated in separate terms up to 2 hours. Note that this course is for 1 credit hour during your first and second semester and will require a mandatory final paper. Prerequisite: Graduate MS: Financial Engineering Students only.

IE 528   Computing for Data Analytics   credit: 4 Hours.

Hands-on programming course on select topics in data science and big data with major emphasis on a semester long project. Course will cover a variety of topics and tools in big data including Hadoop MapReduce Framwork, HBase, and Storm; Machine Learning; and Optimization. 4 graduate hours. No professional credit. Prerequisite: CS 242, CS 446. All ISE graduate students and students enrolled in the Master of Science in Advanced Analytics (MSAA) are eligible to take the course.

IE 529   Stats of Big Data & Clustering   credit: 4 Hours.

This course will cover various foundational topics in data science. Parametric and non-parametric methods. Hypothesis testing; Regression; Classification; Dimension reduction; and Regularization. Unsupervised and semi-supervised learning, along with a few case studies. 4 graduate hours. No professional credit. Prerequisite: MATH 415 and IE 300 or equivalent. All ISE graduate students and students enrolled in the Master of Science in Advanced Analytics (MSAA) are eligible to take the course.

IE 530   Optimiztion for Data Analytics   credit: 4 Hours.

Basic optimization methods for data analytics, optimization modeling languages such as AMPL and GAMS, and optimization software including the NEOS server. Linear and integer, and their applications to compressed sensing, data mining, and pattern classification. 4 graduate hours. No professional credit. Prerequisite: IE 411. All ISE graduate students and students enrolled in the Master of Science in Advanced Analytics (MSAA) are eligible to take the course.

IE 531   Algorithms for Data Analytics   credit: 4 Hours.

This course will introduce the student to a set of algorithms for data analytics which include: hashing, indexes, caching; algorithms for structured datasets; streaming data modes; PageRank algorithms for market-basket models; clustering algorithms; and case studies. 4 graduate hours. No professional credit. Prerequisite: IE 411, CS 225. ISE graduate students and students enrolled in the Master of Science in Advanced Analytics (MCAA) are eligible to take the course.

IE 532   Analysis of Network Data   credit: 4 Hours.

This course will focus on statistical aspects analyzing network data. It will review illustrative problems relating to aggregation of information, decision-making, and inference tasks over various graphical models and networks. 4 graduate hours. No professional credit. Prerequisite: MATH 412. ISE graduate students and students enrolled in the Master of Science in Advanced Analytics (MCAA) are eligible to take the course.

IE 533   Big Graphs and Social Networks   credit: 4 Hours.

This course will cover the fundamentals of graph theory and network optimization. It will focus on algorithmic challenges associated with big graphs and intertwine the Hadoop Framework for solving example problems like shortest paths, link analysis, graph association and inexact graph matching. Applications in social network analysis will include study of network types, random graph models, exact and approximate computation of centrality measure, finding high value individuals, community detection, diffusion processes and cascading models, and influence maximization. 4 graduate hours. No professional credit. Prerequisite: MATH 213, IE 300, IE 411. ISE graduate students and students enrolled in the Master of Science in Advanced Analytics (MCAA) are eligible to take the course.

IE 542   Cooperative Problem Solving   credit: 4 Hours.

Advanced graduate seminar on problem-solving models and taxonomies, models of coordination of activity and communication among multiple agents, design of human-machine cooperative problem-solving systems, adaptive automation, and intelligent decision support. Readings drawn from work in pragmatics, distributed artificial intelligence, cognitive engineering, and related areas. 4 graduate hours. No professional credit. Prerequisite: Credit or concurrent registration in either CS 440 or PSYC 527.

IE 590   Seminar   credit: 0 Hours.

Presentation and discussion of significant developments in industrial engineering. Approved for S/U grading only. May be repeated.

IE 597   Independent Study   credit: 1 to 4 Hours.

Independent study of advanced problems related to industrial engineering. May be repeated in the same or separate terms if topics vary to a maximum of 12 hours. Prerequisite: Consent of instructor.

IE 598   Special Topics   credit: 1 to 4 Hours.

Subject offerings of new and developing areas of knowledge in industrial engineering intended to augment the existing curriculum. See Class Schedule or departmental course information for topics and prerequisites. Approved for letter and S/U grading. May be repeated in the same or separate terms if topics vary.

IE 599   Thesis Research   credit: 0 to 16 Hours.

Approved for S/U grading only. May be repeated.