INTEGRATIVE BIOLOGY (IB)

IB Class Schedule (https://courses.illinois.edu/schedule/DEFAULT/DEFAULT/IB)

Courses

IB 100 Biology in Today's World credit: 3 Hours.
Introduction to biology for the non-major. In-depth focus on three contemporary problems-maintaining a livable environment, issues of human health, and evolution. Lecture and discussion. This course satisfies the General Education Criteria for:
UIUC: Life Sciences

IB 103 Introduction to Plant Biology credit: 4 Hours.
Basic principles of growth and form, physiology, genetics, evolution, and ecology in plant biology. Lecture and laboratory. This course satisfies the General Education Criteria for:
UIUC: Life Sciences

IB 104 Animal Biology credit: 4 Hours.
Introductory zoological concepts with emphasis on the diversity and comparative anatomy of animals and the fundamentals of physiology, genetics, evolution, and behavior. Lecture and laboratory. The laboratory includes vertebrate dissection.

IB 105 Environmental Biology credit: 3 Hours.
Introduction to ecological principles in relation to understanding environmental problems; lecture and discussion emphasize impacts upon ecosystems by human activities such as air and water pollution, usage of pesticides and pest control measures, expansion of agriculture in tropics and arid regions, harvesting the oceans, and development of energy sources. This course satisfies the General Education Criteria for:
UIUC: Life Sciences

IB 106 Extinction: Dinosaurs to Dodos credit: 3 Hours.
Examines the role of extinction in shaping the history of life on Earth. Explores the "big five" extinction events - including the two mass extinctions that mark the rise and fall of the dinosaur - and other periods of rapid ecological change. Lecture and discussion examine the causes of these mass extinctions on the past, and studies how animal and plant life recovered from them. A major theme of the course will be the ongoing modern extinction crisis, the lessons we can learn from the past when addressing modern biodiversity loss, from the loss of the dodo bird in the 17th century to the threat of extinction faced by polar bears and other plants and animals today. Same as ESE 126 and GEOL 106. This course satisfies the General Education Criteria for:
UIUC: Life Sciences

IB 107 Global Warming, Biofuels, Food credit: 3 Hours.
Introduction for non-science majors to the biology and ecology underlying the likely impacts of global change on our society this century. Lecture and discussion emphasize: global warming, alternative biofuels, future food security, and conservation of biodiversity. For non-majors only. This course satisfies the General Education Criteria for:
UIUC: Life Sciences

IB 109 Insects and People credit: 3 Hours.
Fundamentals of insect biology as reflected in human culture; insect physiology, ecology, and behavior discussed in the context of art, literature, movies, medicine, sports, law, and history. This course satisfies the General Education Criteria for:
UIUC: Life Sciences

IB 150 Organismal & Evolutionary Biol credit: 4 Hours.
Introduction to physiology, genetics, and evolution of organisms, and their ecology and diversity. This course satisfies the General Education Criteria for:
UIUC: Life Sciences

IB 151 Organismal & Evol Biol Lab credit: 1 Hour.
Topics follow lecture topics in IB 150 and include labs in ecology, plant and animal function, and genetics and evolution. Designed for non-majors needing a year of biology with lab. Credit is not given for IB 151 for Integrative Biology or Molecular and Cellular Biology majors. Prerequisite: Credit or concurrent registration in IB 150.

IB 199 Undergraduate Open Seminar credit: 0 to 5 Hours.
Approved for both letter and S/U grading. May be repeated to a maximum of 5 hours.

IB 202 Anatomy and Physiology credit: 3 OR 4 Hours.
How animals function in acquiring, processing, and allocating resources in the face of environmental constraints. The inquiry-based laboratory emphasizes testing of hypotheses related to functioning of anatomical and physiological components of the basic systems of animals. Lecture only, 3 hours; with laboratory, 4 hours. Students must complete the laboratory portion of the course to receive 4 hours of credit. The laboratory includes vertebrate dissection. Prerequisite: IB 150 and MCB 150.

IB 203 Ecology credit: 4 Hours.
The links between evolution and ecology, population dynamics, community structure and function, and ecosystem function on local and global scales. Basic ecology needed to understand environmental problems and to conserve biodiversity. Investigations in both field and laboratory included. Prerequisite: IB 150 and MCB 150. This course satisfies the General Education Criteria for:
UIUC: Advanced Composition

IB 204 Genetics credit: 3 OR 4 Hours.
The fundamentals of inheritance, with an emphasis on eukaryotes. Major topics include transmission genetics, quantitative genetics, cytogenetics, genomics, genetics of development and behavior, and population genetics. Laboratory emphasizes an experimental, inquiry-based approach to modern and classical genetics. Lecture only, 3 hours; with laboratory, 4 hours. Students must complete the laboratory portion of the course to receive 4 hours of credit. Prerequisite: IB 150 and MCB 150.

IB 220 Applied Entomology credit: 3 Hours.
Same as CPSC 270 and NRES 270. See CPSC 270. This course satisfies the General Education Criteria for:
UIUC: Life Sciences

IB 270 Evolution of Molecules & Cells credit: 5 Hours.
The major evolutionary transitions of biomolecules and cells including: energy acquisition and metabolism; information inheritance, system regulation, and genomes; the origin of life and of the prokaryotic cell, eukaryotic cell, and multicellularity. Lecture and laboratory. Credit is not given for both IB 270 and either MCB 250 or MCB 252. Prerequisite: Admission to the IB honors biology option; credit or concurrent registration in organic chemistry.

Information listed in this catalog is current as of 04/2016
IB 271 Organismal Biology credit: 5 Hours.
Integrated study of the diversity and structure and function of plants and animals in evolutionary and environmental contexts. Conceptual themes and techniques of molecular and cellular levels of biological organization will be integrated as well. Lecture and laboratory. The laboratory includes vertebrate dissection. Credit is not given for both IB 271 and IB 202. Prerequisite: IB 270; good standing in the honors biology option. This course satisfies the General Education Criteria for: UIUC: Advanced Composition

IB 299 Undergraduate Special Course credit: 0 to 5 Hours.
Approved for letter and S/U grading. May be repeated in the same term; may be repeated in separate terms to a maximum of 6 hours.

IB 302 Evolution credit: 4 Hours.
Broad introduction to evolutionary biology, including natural selection and microevolution, phylogeny, speciation, molecular evolution, macroevolution and the fossil records. The laboratory emphasizes a survey of biodiversity and processes and patterns of evolution. Prerequisite: IB 204 or consent of instructor.

IB 329 Animal Behavior credit: 3 Hours.
Introductory course emphasizing how patterns of behavior promote survival, change through evolution, and are modified by the environment. Same as ANSC 366 and ANTH 342. Credit is not given for both IB 329 and ANSC 363. Prerequisite: IB 150 and MCB 150; or consent of instructor.

IB 335 Systematics of Plants credit: 4 Hours.
Introduces the principles and methods of the identification, naming, classification, systematics, and evolution of flowering plants; includes a survey of selected flowering plant families with information on their interrelationships. Prerequisite: One of the following: IB 100, IB 101, IB 102, IB 103, or IB 150; consent of the instructor.

IB 348 Fish and Wildlife Ecology credit: 3 Hours.
Same as NRES 348. See NRES 348.

IB 360 Evolution and Human Health credit: 3 Hours.
Our health is inseparably tied to our evolutionary history. As a result, evolution is an important underpinning discipline for health professionals. This course first provides an overview of evolutionary processes, molecular evolution, human evolution, life history theory, and evolutionary-developmental biology. Second, it illustrates the application of these principles to our understanding of nutrition and metabolism, reproduction, disease and stress, and behavior. Third, it shows in practical terms how the principles of evolutionary medicine can be applied in medical practice and public health. Same as ANTH 360. Prerequisite: IB 302 or MCB 250 or MCB 244, or consent of instructor.

IB 361 Ecology and Human Health credit: 3 Hours.
Exploration of the emergence of infectious diseases and other human health issues from an ecological perspective, including vector-borne diseases, diseases spread from wildlife in terrestrial and aquatic ecosystems, and the role of pathogens and parasites in community and population ecology, food webs, and ecosystem functioning. Attention will be placed on how current and future global change and biodiversity loss will contribute to the increasing prevalence of human emerging diseases. Same as ANTH 361. Prerequisite: IB 203 or consent of instructor.

IB 363 Plants and Their Uses credit: 3 Hours.
Consideration of plants which are useful or harmful: their origins and history, botanical relationships, chemical constituents which make them economically important, and their roles in prehistoric and modern cultures and civilizations. Same as ANTH 378. Prerequisite: IB 102, IB 103, or IB 150; or consent of instructor.

IB 364 Genomics and Human Health credit: 3 Hours.
Highlights advances in understanding the human genome, by utilizing the latest techniques in bioinformatics, i.e. acquiring, analyzing, storing, and displaying the information from the entire genome and protein sequences. The course describes the theory and practices behind modern sequencing techniques and explores the genome with a particular emphasis on the use of extensive online databases and software. Students will analyze one human disorder using bioinformatics software and databases in order to update older published literature about the genomics underpinning the disorder. Prerequisite: IB 204 or consent of instructor.

IB 368 Vertebrate Natural History credit: 4 Hours.
Introduction to the classification, life histories, adaptations, and ecology of fishes, amphibians, reptiles, birds, and mammals. Focus is on species of the Midwest region. Laboratory emphasizes identification and distribution of Illinois’ vertebrate fauna. Some Saturday field trips are required. Same as NRES 368. Prerequisite: IB 203 or NRES 219 or consent of instructor.

IB 372 Ecology and Evolution credit: 5 Hours.
Integrated study of ecology, population genetics, and evolution. Conceptual themes and techniques from the molecular, cellular, and organismal levels of biology will be integrated as well. Lecture, laboratory, and field work. Credit is not given for both IB 372 and either IB 203 or IB 302. Prerequisite: IB 271; good standing in the IB honors biology option.

IB 390 Introductory Research credit: 1 to 5 Hours.
Laboratory and/or field research and/or reading supervised by faculty members in the School of Integrative Biology. Approved for S/U grading only. May be repeated. Credit is not given for more than a combined maximum of 10 hours of IB 390 or IB 490 towards graduation for IB majors. Prerequisite: Consent of instructor.

IB 401 Introduction to Entomology credit: 3 or 4 Hours.
Integrated studies of the principal morphological, physiological, ecological and behavioral relationships among insects. Lecture and laboratory. 3 or 4 undergraduate hours. 3 or 4 graduate hours. An insect collection will be required for 4 hours credit. Prerequisite: IB 150; or consent of instructor.

IB 403 Behavioral Inference & Fossils credit: 3 or 4 Hours.
Same as ANTH 446. See ANTH 446.

IB 405 Ecological Genetics credit: 3 or 4 Hours.
Study of the genetics of natural populations, stressing empirical observations and experiments. Emphasis on recent theories of genotype/environmental interactions and their relationship to evolutionary processes. Offered in alternate years. 3 undergraduate hours. 3 graduate hours. Prerequisite: IB 204; or consent of instructor.

IB 410 Evolution and Development credit: 3 Hours.
Every animal is the product of two processes: development from an egg and evolution from its ancestors. The new field of evolutionary development biology, or “evo-devo", examines the relationship between these two processes. This course examines the developmental mechanism underlying the evolution of animal design, particularly with regard to the patterning of animal body plans and body parts. Takes an integrative approach, synthesizing data from paleontology, embryology, and genetics. Designed for students with prior coursework in evolution who are interested in understanding the mechanisms behind evolution. No previous background in development is required. Offered in alternate years. 3 undergraduate hours. 3 graduate hours. Prerequisite: IB 302 or IB 372 or consent of instructor.
IB 411 Bioinspiration credit: 3 Hours.
Focuses on how experts in biology and technological fields find inspiration in nature and use it as a model to make technological innovations and solve societal problems. In the future, our day-to-day living, health, and the environment will benefit from interdisciplinary teams using findings in basic biological research for technological innovation. Topics to be explored include human health, efficient architecture, cooperative control, robotics, swarm logic, and advanced biological materials. 3 undergraduate hours. 3 graduate hours.

IB 416 Population Genetics credit: 3 or 4 Hours.
Same as ANSC 446. See ANSC 446.

IB 420 Plant Physiology credit: 3 Hours.
General course concerned with plant functions, including water relations, mineral nutrition, metabolism, growth, and reproduction. Same as CPSC 484. 3 undergraduate hours. 3 graduate hours. Prerequisite: IB 103 or IB 150 and MCB 150; CHEM 232; IB 202 recommended; or consent of instructor.

IB 421 Photosynthesis credit: 3 Hours.
Comprehensive description of photosynthesis. Topics include: the photosynthetic membranes, light absorption, electron and proton transfer, photophosphorylation, water oxidation, RUBP carboxylase/oxygenase, photorespiration, whole plant photosynthesis, gas exchange and atmospheric interactions, and impacts of global environmental change. Same as BIOP 432 and CPSC 489. 3 undergraduate hours. 3 graduate hours. Prerequisite: IB 420, MCB 354, MCB 450, BIOP 401, or equivalent; or consent of instructor.

IB 424 Plant Development credit: 3 Hours.
Mechanisms underlying plant development: cytodifferentiation and the cell cycle, regulation of gene expression, induction, determination, morphogenesis, and pattern formation. 3 undergraduate hours. 3 graduate hours. Offered in alternate years. Prerequisite: IB 103 or IB 150; and MCB 150; IB 202 recommended; or consent of instructor.

IB 426 Env and Evol Physl of Animals credit: 3 Hours.
Physiological adaptations of invertebrate and vertebrate animals to diverse aquatic and terrestrial environments and the extreme habitats embodied therein. 3 undergraduate hours. 3 graduate hours. Prerequisite: MCB 150; IB 202; CHEM 232; or consent of instructor.

IB 427 Insect Physiology credit: 4 Hours.
The principal physiological and biochemical functions of insects. Lecture and laboratory. Offered in alternate years. 4 undergraduate hours. 4 graduate hours. Prerequisite: IB 202 and IB 401; or consent of instructor.

IB 428 Primate Form and Behavior credit: 3 or 4 Hours.
Same as ANTH 443. See ANTH 443.

IB 430 Animal Behavior Lab credit: 3 Hours.
Inquiry-driven laboratory course in animal behavior. Students work in groups to generate hypotheses, design experiments, collect and analyze data, and write up their results. Experiments will be carried out in both the field and lab. Discussions emphasize the scientific process, including hypothesis testing, and experimental design and statistics. 3 undergraduate hours. No graduate credit. Prerequisite: IB 329. For majors only.

IB 431 Behavioral Ecology credit: 3 Hours.
In-depth examination of areas of current interest at the interface of behavior, ecology, and evolution; focuses on communication, foraging, and social behavior. 3 undergraduate hours. 3 graduate hours. Offered in alternate years. Prerequisite: IB 329; or consent of instructor.

IB 432 Genes and Behavior credit: 3 Hours.
Concepts, methods, and problems in the analysis of the relationship between genes and behavior, the complex neurobiological processes that mediate action on behavior, in appropriate ecological and evolutionary contexts. Same as ANTH 432, NEUR 432, and PSYC 432. 3 undergraduate hours. 3 graduate hours. Prerequisite: IB 150 and IB 204; or consent of instructor.

IB 433 Comparative Vertebrate Anatomy credit: 5 Hours.
Comparative structure, evolution, and classification of chordate animals emphasizing vertebrates. Strong attention to relationships of fossils to present animals. Function of parts, their evolution, and some developmental aspects. Lab involves dissection of vertebrates. Lecture and Laboratory. Same as ANTH 434. 5 undergraduate hours. 5 graduate hours. Prerequisite: IB 202, IB 302, or consent of instructor.

IB 437 Primate Behav Endocrinology credit: 3 or 4 Hours.
Same as ANTH 437. See ANTH 437.

IB 439 Biogeography credit: 3 Hours.
Spatial and temporal patterns of biological diversity and the factors that govern the distribution and abundance of taxa. This course addresses two of its subfields: historical biogeography - the origin, dispersal, and extinction of taxa and biotas; and ecological biogeography - the role physical and biotic environments have played in determining taxonomic distributions. Also explores the ecological, evolutionary, climatological, and paleontological foundations for the distribution of species and biological communities. Includes a review of many of the field's classical papers, the current synthesis of biogeographic theory, and the relevance of biogeography to modern conservation goals. Offered in alternate years. Same as ANTH 436, ESE 439, GEOG 436, and NRES 441. 3 undergraduate hours. 3 graduate hours. Prerequisite: IB 150 or other introductory biology course, or consent of instructor.

IB 440 Plants and Global Change credit: 3 Hours.
Same as CPSC 431 and NRES 431. See CPSC 431.

IB 442 Evolution of Infectious Disease credit: 3 Hours.
Same as MCB 435. See MCB 435.

IB 443 Evolutionary Ecology credit: 3 Hours.
Emphasizes the evolution of life-history strategies in plants and animals (reproductive rates, life cycles, sex ratios, breeding and mating systems) and the coevolution of animals and plants (pollination, dispersal, and herbivory). 3 undergraduate hours. 3 graduate hours. Offered in alternate years. Prerequisite: IB 203 or equivalent; IB 302; or consent of instructor.

IB 444 Insect Ecology credit: 3 or 4 Hours.
Discussion of the practical and theoretical aspects of ecology in relation to insects as individuals, populations, and communities; emphasis on the role of insects in the environment. 3 or 4 undergraduate hours. 3 or 4 graduate hours. Offered in alternate years. Lecture only, 3 hours; with laboratory, 4 hours. Prerequisite: IB 150 and MCB 150 or consent of instructor.

IB 445 Chemical Ecology credit: 3 Hours.
Chemical bases of ecological interactions among organisms; topics include the chemical structures and functions of messenger compounds important in inter- and intraspecific interactions among plants, insects, higher animals, fungi, microbes, and their environments. 3 undergraduate hours. 3 graduate hours. Offered in alternate years. Prerequisite: IB 150 and MCB 150 and CHEM 232; or consent of instructor.
IB 447 Field Ecology credit: 1 Hour.
Study of habitats in various sections of North America during spring
vacation or intersession. Outdoor cooking and camping; transportation
in University cars. Additional fees may apply. See Class Schedule. 1
undergraduate hour. 1 graduate hour. May be repeated to a maximum of
3 hours. Prerequisite: IB 203; or consent of instructor.

IB 449 Limnology credit: 3 or 4 Hours.
Fresh water biology; study of the lake, pond, and river with emphasis on
the physical environment as well as on the plants and animals which live
in fresh water. Lectures, discussions, laboratory, and field work. Students
must complete the laboratory portion of the course to receive 4 hours
of credit. Offered in alternate years. 3 or 4 undergraduate hours. 3 or 4
graduate hours. Prerequisite: IB 203 or consent of instructor.

IB 451 Conservation Biology credit: 4 Hours.
Synthesis of conservation biology with an emphasis on the preservation
of biological diversity and its evolutionary potential. Laboratory
includes an introduction to the use of modern molecular techniques
in conservation biology, computer simulation modeling, and field
conservation problem solving. Same as CPSC 436 and ENV 420. 4
undergraduate hours. 4 graduate hours. Offered in alternate years.
Prerequisite: IB 203 or consent of instructor.

IB 452 Ecosystem Ecology credit: 3 Hours.
Distribution and structure of ecosystems on earth; integration of multiple
disciplines to gain a holistic view of ecosystem function; ecosystem
concepts as they apply to understand natural and anthropogenic
environmental change. Offered in alternate years. Same as ESE 452
and NRES 462. 3 undergraduate hours. 3 graduate hours. Prerequisite:
CHEM 102 and CHEM 104; or consent of instructor.

IB 453 Community Ecology credit: 3 Hours.
The direct and indirect interactions among species that determine the
structure and composition of plant and animal communities. Emphasis
will be on the maintenance of species diversity and its consequences
at both local and regional scales. Offered in alternate years. Same as
NRES 452. 3 undergraduate hours. 3 graduate hours. Prerequisite:
IB 203 or consent of instructor.

IB 461 Ornithology credit: 4 Hours.
Structure, function, ecology, behavior, and evolution of the birds of the
world; laboratory devoted to anatomy and identification; and field studies
devoted to identification and behavior of birds. Independent research
project and two optional weekend field trips. Same as NRES 461.
3 undergraduate hours. 4 graduate hours. Prerequisite: IB 203;
or consent of instructor.

IB 462 Mammalogy credit: 4 Hours.
Classification, distribution, structure, function, life history, evolution and
identification of mammals. Lecture/discussions, laboratory and field
work. The laboratory includes vertebrate dissection. 4 undergraduate
hours. 4 graduate hours. Offered in alternate years. Prerequisite: IB 202
and IB 203; or consent of instructor.

IB 463 Ichthyology credit: 4 Hours.
Classification, anatomy, ecology, behavior, distribution, and evolution
of fishes of the world. Emphasis is on morphological, ecological, and
behavioral diversification of fishes in a phylogenetic context. Laboratory
devoted to anatomy and identification. 4 undergraduate hours. 4
graduate hours. Offered in alternate years. Prerequisite: IB 302; or
consent of instructor.

IB 464 Herpetology credit: 4 Hours.
Classification, diversity, structure, function, ecology, behavior and
evolution of amphibians and reptiles. Laboratory devoted to anatomy
and identification. Offered in alternate years. 4 undergraduate hours. 4
graduate hours. Prerequisite: IB 302; or consent of instructor.

IB 467 Principles of Systematics credit: 4 Hours.
Comprehensive survey of the theory and methodology of systematics
as they are applied today to all groups of organisms, with a practical
experience in the acquisition and analysis of systematic data. 4
undergraduate hours. 4 graduate hours. Offered in alternate years.
Prerequisite: IB 302 and IB 335 or IB 468; or consent of instructor.

IB 468 Insect Classification and Evol credit: 4 Hours.
Analytical survey of the classification and evolution of the orders and
principal families of insects, with practical experience in the identification
of insects at these taxonomic levels; field trips required. Lecture and
laboratory. 4 undergraduate hours. 4 graduate hours. Offered in alternate
years. Prerequisite: IB 401 or consent of instructor.

IB 471 General Mycology credit: 4 Hours.
Structure, classification, and identification of fungi, including those
of economic importance. Offered in alternate years. 4 undergraduate
hours. 4 graduate hours. Prerequisite: IB 150 and MCB 150; IB 302
recommended; or consent of instructor.

IB 472 Plant Molecular Biology credit: 1 Hour.
The basic concepts and methodologies of measuring plant gene
expression and gene product activity and constructing transgenic
plants are presented and discussed. Serves as a gateway to specialized
methodology approaches covered in IB 473, IB 474, and IB 475. Same as
CPSC 462. 1 undergraduate hour. 1 graduate hour. Prerequisite: MCB 150
and IB 204; or consent of instructor.

IB 473 Plant Genomics credit: 1 Hour.
Provides broad overview of structural and functional genomics, including
genetic and physical mapping, whole genome sequencing, comparative
genomic analysis, evolution of gene families and repetitive sequences,
genome-wide expression analysis. Emphasis on structural and
comparative genomics with brief introduction to functional genomics and
bioinformatics. Same as CPSC 467. 1 undergraduate hour. 1 graduate
hour. Prerequisite: MCB 250; IB 472; or consent of instructor.

IB 474 Plant Proteomics- Metabolomics credit: 2 Hours.
Broad introduction to plant proteomics and metabolomics, including
a survey of contemporary methods and their applications for protein
and metabolite identifications. Proteomics will include the study
of post translational modifications and protein-protein interactions.
Metabolomics will introduce the complexities on pathway tracing and
elucidation. The focus of the course is on the application of proteomic-
metabolomic approaches to answer biological questions. Tours of
proteomic and metabonomic facilities will occur. Same as CPSC 468.
2 undergraduate hours. 2 graduate hours. Prerequisite: MCB 354; IB 472;
or consent of instructor.

IB 477 Genomics for Plant Improvement credit: 2 Hours.
Same as CPSC 466. See CPSC 466.

IB 478 Advanced Plant Genetics credit: 3 Hours.
Same as CPSC 452. See CPSC 452.
IB 481 Vector-borne Diseases credit: 4 Hours.
Study of the major groups of arthropods and associated pathogens that affect the health and well-being of humans and other animals. Training will include ecology, evolutionary biology, and epidemiology of vector-borne diseases; taxonomy and identification of vector arthropods; practical skills in molecular and mathematical biology, spatial analysis and field research. Lecture will make use of technology-enhanced classroom for group-based active learning exercises to address critical challenges in vector-borne disease control. 4 undergraduate hours. 4 graduate hours. Offered in alternate years. Prerequisite: IB 361 or IB 401 or consent of instructor.

IB 482 Insect Pest Management credit: 3 Hours.
The principles underlying the control of important insect pests of agriculture and of human and animal health; emphasis on integrated pest management involving a systems approach which combines biological, cultural, and chemical suppressive factors into ecologically sound and socially and economically acceptable technology. Lecture and laboratory. Same as CPSC 479. 3 undergraduate hours. 3 graduate hours. Offered in alternate years. Prerequisite: IB 150 or equivalent; or consent of department.

IB 483 Insect Pathology credit: 3 Hours.
The general principles of pathology as they apply to insects; includes non-infectious and infectious diseases caused by viruses, bacteria, fungi, protozoa, and nematodes. Studies the epizootiology of naturally occurring insect disease and the use of insect pathogens as microbial control agents. Same as CPSC 475. 3 undergraduate hours. 3 graduate hours. Lecture in alternate years. Prerequisite: IB 150 and MCB 150 or consent of instructor.

IB 484 Paleoclimatology credit: 4 Hours.
Same as GEOL 484. See GEOL 484.

IB 485 Environ Toxicology & Health credit: 3 Hours.
Explores toxicological, environmental, public health, occupational and ecological aspects of the use and release of toxic substances in the environment; features case histories of environmental contamination that illustrate ecological, health, and social aspects of pollution; emphasizes biochemical mechanisms and ecosystem consequences. Same as CHLH 461 and ENVS 431. 3 undergraduate hours. 3 graduate hours. Prerequisite: A college chemistry course and a college biology course; or consent of instructor.

IB 486 Pesticide Toxicology credit: 3 or 4 Hours.
Examines the biological effects of major classes of insecticides and herbicides, and of selected individual fungicides, including: toxicity to nontarget organisms, persistence and fate in the environment, biotransformation, and ecological consequences. Current regulations on pesticide testing will also be presented. The mechanism of action on target species will be discussed only in relation to effects on nontarget organisms. Same as CB 434 and ENVS 433. 3 undergraduate hours. 4 graduate hours. Offered in alternate years. Prerequisite: One year of college chemistry and one year of college biology; or consent of instructor.

IB 487 Math Modeling in Life Sciences credit: 3 or 4 Hours.
Same as ANSC 448 and STAT 458. See ANSC 448.

IB 488 Environmental Stable Isotopes credit: 3 Hours.
Stable isotopes are powerful tools for studying environmental processes, acting as tracers of resource origin, fate, and flux and integrators of system processes. The goal of this course is to provide a fundamental knowledge base and hands-on training for students to become practitioners of natural abundance and enriched stable isotope techniques. The course will focus on stable isotopes of biologically-relevant light elements (C, H, N, O, S). We will also review case studies demonstrating application of these techniques to disciplines including anthropology, animal, insect, and plant biology, biogeochemistry, biometeorology, ecosystem ecology, forensics, microbial ecology, paleoclimatology, and paleoecology. Offered in alternate years. Same as ATMS 422, GEO 488, and NRES 478. 3 undergraduate hours. 3 graduate hours. Offered in alternate years. Prerequisite: CHEM 104 or equivalent; or consent of instructor.

IB 489 Undergraduate Research Abroad credit: 1 to 4 Hours.
Students assist in research under University of Illinois faculty supervision at a location outside of the United States. Topics and type of assistance vary. 1 to 4 undergraduate hours. No graduate credit. May be repeated in separate terms up to 6 hours. Prerequisite: Evidence of adequate preparation for such study; consent of UI faculty member supervising the work (who will have examined the proposed research plan); and approval of the school. Not available to freshman.

IB 490 Independent Study credit: 1 to 5 Hours.
Laboratory and/or field research supervised by faculty members in the School of Integrative Biology. A written report is required. 1 to 5 undergraduate hours. No graduate credit. May be repeated. Credit is not given for more than a combined maximum of 10 hours of IB 390 or IB 490 towards graduation for IB majors. Prerequisite: Consent of instructor.

IB 491 Biological Modeling credit: 3 or 4 Hours.
Same as ANSC 449, CPSC 448, and GEOG 468. See GEOG 468.

IB 492 Science Communication Skills credit: 2 Hours.
A successful career in scientific research, teaching and service requires tools and skills for communicating research. Students interested in going into science careers need to know how to write a competitive graduate school or job application, a thesis proposal for graduate research, a fellowship or grant proposal, and how to give a good scientific presentation. This course is designed to teach students these skills with targeted in and out of class exercises. 2 undergraduate hours. No graduate credit. Prerequisite: IB 203 or IB 271; AND one of the following: IB 299, IB 390, IB 490, or consent of instructor. Junior IB majors only.

IB 494 Theoretical Biology + Models credit: 4 Hours.
Biologists are increasingly using mathematical and computer-based models to complement fieldwork and experimental data. These models provide a context in which to understand and answer existing questions, and also lead us to new questions and new insights. Students will encode biological mechanisms into mathematical models, develop the skills to analyze and discuss relevant primary literature. Examples will be drawn largely from ecology and evolutionary biology. 4 undergraduate hours. 4 graduate hours. Prerequisite: MATH 220 or MATH 221; Introductory courses in Ecology and Evolution.

IB 495 Philosophy of Biology credit: 3 or 4 Hours.
Same as PHIL 473. See PHIL 473.

IB 496 Special Courses credit: 1 to 5 Hours.
Experimental and temporary courses. Additional fees may apply. See Class Schedule. 1 to 5 undergraduate hours. 1 to 4 graduate hours. Approved for letter and S/U grading. May be repeated as topics vary. Prerequisite: Consent of instructor.
IB 501 Programming for Genomics credit: 4 Hours.
Students will learn to think algorithmically by constructing a biological hypothesis, and implementing code or deploying an existing code implementation, to test that hypothesis. Students will learn to use UNIX and to program in Python, using biological data sets from high-throughput sequencing projects. We will cover major genomics approaches and the algorithms that underlie them, including K-mer analysis, genome and transcriptome assembly, databases and SQL, and visualization techniques. Same as CPSC 501. 4 graduate hours.
No professional credit. Prerequisite: Courses in Ecology, Evolution, and Molecular Biology, or consent of instructor.

IB 502 Biological Networks credit: 3 Hours.
This taxon-neutral course prepares students to organize, integrate and analyze complex, multi-scale data that describe biological systems. It provides training, collecting, and processing “omic”-scale data (genomics, transcriptomics, proteomics, metabolomics) into network models, and analyzing these models using current in silico tools to determine biological significance and function of the resulting network interactions. Students will be introduced to Gene Ontology and open source tools for data integration and visualization, including: Cytoscape, Multiple Experiment Viewer, Mapman, and KEGG 3 graduate hours. No professional credit. Prerequisite: Graduate student status or consent of instructor. At least one upper level undergraduate course in molecular biology or its equivalent.

IB 503 Methods/Application in Biotech credit: 3 Hours.
Broad introduction to interdisciplinary methods in and their application to biotechnology research. Draws heavily on the expertise of biotechnology core facilities on campus. Includes tours, data analysis and manipulation, discussion of current literature, and exploration of industry applications. Topics will focus on DNA sequencing, gene expression, bioinformatics, transformation, and cellular imaging. Prerequisite: Courses in molecular genetics (e.g. MCB 250 or IB 204 or IB 472) and cell biology (e.g. MCB 252) or consent of instructor. MCB 450 or MCB 354 or equivalent background in biochemistry is recommended.

IB 504 Genomic Analysis of Insects credit: 3 Hours.
Comprehensive and integrated presentation of insect genomic analysis from the molecular level to that of the population; concepts are applied to certain aspects of insect population regulation. Offered in alternate years. Prerequisite: IB 204 or consent of instructor.

IB 505 Bioinformatics & Systems Biol credit: 4 Hours.
Same as CPSC 567. See CPSC 567.

IB 506 Applied Bioinformatics credit: 4 Hours.
Same as ANSC 542 and CPSC 569. See ANSC 542.

IB 507 Statistical Genomics credit: 3 or 4 Hours.
Same as ANSC 545 and CPSC 545. See ANSC 545.

IB 508 Multivariate Biostatistics credit: 4 Hours.
Same as PATH 528. See PATH 528.

IB 510 Discussions in Plant Biology credit: 0 to 2 Hours.
All graduate students in plant biology, except those with conflicting teaching assignments, are required to register in and attend the general seminar. Approved for both letter and S/U grading. No credit given except to those students presenting the results of their Ph.D. thesis research or industry research projects in the PSM program.

IB 513 Disc in Plant Physiology credit: 1 Hour.
Approved for letter and S/U grading. May be repeated.

IB 516 Ecosystem Biogeochemistry credit: 4 Hours.
Same as NRES 516. See NRES 516.
IB 535 Biology and Tech Innovation credit: 4 Hours.
Focuses on how experts in biology and technological fields use bio-
inpiration to create technology innovations to solve human problems.
Classic examples, such as how the observation that seeds with barbs
stick to animal fur led to Velcro, are explored. Students use and expand
upon their current biological knowledge to explore new ways to create
biologically-based sustainable innovations. Topics to be explored include
nest building as inspiration for energy-efficient architecture, plant
chemistry as inspiration for green manufacturing, animal locomotion
and sensing as inspiration for robots, and the advances in understanding
of biological nanostructures and nanoprocesses as inspiration for
nanotechnology. In this course, students also produce teaching materials
for their classrooms.

IB 542 Environmental Plant Physiology credit: 4 Hours.
The interaction of plants and environment at the level of the whole
organism, extending to the cell and the community; emphasis on heat
and mass transfer, plant and soil potentials, and effects of light on
growth. Same as CPSC 538. Offered in alternate years. Prerequisite:
IB 420; consent of instructor.

IB 543 Seminar in Primate Ecology credit: 2 or 4 Hours.
Same as ANTH 543. See ANTH 543.

IB 545 Fish and Wildlife Ecol Seminar credit: 2 Hours.
Modern ecological principles and concepts to specific problems in
fisheries and wildlife. Approved for letter and S/U grading. Offered in
alternate years.

IB 546 Topics in Ecology & Evolution credit: 1 Hour.
Speaker seminar series featuring discussion, review and critical analysis
of general concepts and specific problems in ecology and evolution.
Approved for both letter and S/U grading. May be repeated.

IB 590 Individual Topics credit: 2 to 12 Hours.
Individual topics in research conducted under the supervision of faculty
members in the School of Integrative Biology. Designed for graduate
students who would like to become more familiar with specialized fields
of study prior to committing themselves to a specific area for their
doctorate degree. Approved for S/U grading only. May be repeated to a
maximum of 16 hours. Prerequisite: Consent of instructor.