ANSC - ANIMAL SCIENCES

ANSC Class Schedule ([Link](https://courses.illinois.edu/schedule/DEFAULT/DEFAULT/ANSC/))

Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
<th>URL</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 100</td>
<td>Intro to Animal Sciences</td>
<td>4</td>
<td>Link</td>
<td>Survey of beef and dairy cattle, companion animals, horses, poultry, sheep, and swine. Includes the importance of product technology and the basic principles of nutrition, genetics, physiology, and behavior as they apply to breeding, selection, feeding, and management. Lecture and lab.</td>
</tr>
<tr>
<td>ANSC 101</td>
<td>Contemporary Animal Issues</td>
<td>3</td>
<td>Link</td>
<td>Provides an understanding of fundamental issues impacting the care and use of animals, and their role in human welfare. Topics addressed include the fundamental principles of animal domestication and its impact on humans, animal welfare and care, animal-environmental interactions, food safety, diet and health issues, economic and societal issues facing the world today, and bioethical issues.</td>
</tr>
<tr>
<td>ANSC 103</td>
<td>Working With Farm Animals</td>
<td>2</td>
<td>Link</td>
<td>Introductory course that will provide novice students with the fundamentals of animal-animal and animal-human interactions for domestic farm animals. Emphasizes hands-on experiences to develop a background in the concepts and practice of recognizing and understanding the animal's physiology and behavior, animal well being, and animal responses to human interactions. Prerequisite: ANSC 100. Restricted to students in the Animal Sciences department. Not intended for First Time Freshman students.</td>
</tr>
<tr>
<td>ANSC 110</td>
<td>Life With Animals and Biotech</td>
<td>3</td>
<td>Link</td>
<td>Lecture/discussion course that will provide students an overview of biotechnology and animals. Focuses on biotechnological achievements involving animals and how they influence the global development of agriculture, medicine, and industry. Topics will be covered from scientific, discovery, historical, social, and political perspectives. Credit is not given to Animal Science majors. This course satisfies the General Education Criteria for: Nat Sci Tech - Life Sciences</td>
</tr>
<tr>
<td>ANSC 199</td>
<td>Undergraduate Open Seminar</td>
<td>0 to 5</td>
<td>Link</td>
<td>An experimental course on a special topic in animal sciences. Approved for Letter and S/U grading. May be repeated, if topics vary.</td>
</tr>
<tr>
<td>ANSC 201</td>
<td>Principles of Dairy Production</td>
<td>3</td>
<td>Link</td>
<td>Surveys the dairy industry; examines principles of breeding, selection, reproduction, feeding, milking and management of dairy cattle. Prerequisite: ANSC 100.</td>
</tr>
<tr>
<td>ANSC 204</td>
<td>Intro Dairy Cattle Evaluation</td>
<td>2</td>
<td>Link</td>
<td>Evaluation of physical traits of dairy cattle in relation to economic value and genetic improvement; sire selection, mating systems, and genetic merit for dairy cattle. Field trip required. Prerequisite: ANSC 100 or consent of instructor.</td>
</tr>
<tr>
<td>ANSC 205</td>
<td>World Animal Resources</td>
<td>3</td>
<td>Link</td>
<td>Examination of the world’s animals, domesticated and wild, and their uses in various climatic, economic and cultural contexts. Exploration of their contemporary management and their future prospects. Provides background for international experiences, such as ACES 298 and ACES 299. Prerequisite: Completion of the campus Composition I general education requirement. This course satisfies the General Education Criteria for: Nat Sci Tech - Life Sciences</td>
</tr>
<tr>
<td>ANSC 206</td>
<td>Horse Management</td>
<td>3</td>
<td>Link</td>
<td>Focus on the principles of managing horses from birth through breeding; topics include reproductive physiology, breeding management, nutrition, diseases, parasites, herd health programs, genetics, facility design and exercise physiology.</td>
</tr>
<tr>
<td>ANSC 207</td>
<td>The Science of Pets and How to Care for Them</td>
<td>3</td>
<td>Link</td>
<td>An introduction to companion animal biology through consideration of the physical structure, nutrition, behavior, and reproduction of animal species most commonly kept as companions. The basic information is applied to discussion of basic preventive health care. Course content is largely focused on cats and dogs, although other mammals, birds and reptiles will be briefly considered. Legal and economic issues, and ethical considerations associated with companion animals are also incorporated into the course discussion. Credit is not given for both ANSC 207 and ANSC 307. This course satisfies the General Education Criteria for: Nat Sci Tech - Life Sciences</td>
</tr>
<tr>
<td>ANSC 210</td>
<td>Grilling and BBQ Science</td>
<td>2</td>
<td>Link</td>
<td>This course will focus on food preparation and safety, product quality, correct cooking methods, endpoint temperatures, and other general grilling-related topics. The objective is to expand student knowledge on how to utilize different cuts of meat and other products to produce meals. Students will work in groups to prepare a dish with a specific product assigned to them and present their results to the class. Grills and cooking equipment will be provided. Additional fees may apply. See Class Schedule.</td>
</tr>
</tbody>
</table>
ANSC 211 Breeding Animal Evaluation credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/211/)
Application of current scientific tools, methods, and performance programs available to livestock breeders for improving beef cattle, swine, and sheep; emphasis on the changing nature of modern breeds of livestock as influenced by selection, economics, and consumer and market trends. Course requires visits (including weekends) to farms, related companies, and events to observe the latest techniques and scientific principles associated with livestock selection and evaluation. Students are responsible for personal expenses on the field trips. Prerequisite: Junior standing.

ANSC 215 Introduction to Animal Evaluation credit: 1 or 2 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/215/)
The objective of each section is to train students on industry evaluation techniques of animals and/or their by-products. Additionally, students will examine different industry production styles, selection for improvements, and end product marketability. This course is divided into sections that focus on evaluation of animals or animal by-products (meat or dairy) and will develop skills of basic evaluation associated with each section. Travel to production facilities may occur based on the section. For Animal Science majors, only one instance (2 credit hours) taken in this course will count as an Applied Science credit towards their degree requirements. May be repeated in separate semesters, if topics vary to a maximum of 6 credit hours.

ANSC 219 Meat Technology credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/219/)
Student participation in the transformation of live animals through harvest and carcass fabrication into food products for human consumption; includes laboratory. Purchase of personal equipment is required.

ANSC 221 Cells, Metabolism and Genetics credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/221/)
Provides an introductory background in basic aspects of cell biology, physiology, and genetics. Topics addressed include cell structure, cell organelles, and different types of cells, protein synthesis and gene expression, chromosome structure, basic mechanisms of chromosome replication, basic principles of quantitative and population genetics, and an introduction to genomics and proteomics. Prerequisite: ANSC 100, CHEM 102 and 103 or concurrent enrollment.

ANSC 222 Anatomy and Physiology credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/222/)
Provides an introductory background in basic and fundamental principles of animal anatomy and physiology. The major organ systems (muscle, skeletal, neural, endocrine, cardiovascular, respiratory, and renal) will be presented with an emphasis on comparative anatomy, integrated function, and specific homeostatic mechanisms. Prerequisite: ANSC 100.

ANSC 223 Animal Nutrition credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/223/)
Provides an introductory background in the fundamental principles of animal nutrition and how nutrition impacts animal well-being and performance. Students will develop comprehensive knowledge in gastrointestinal and digestive anatomy and physiology, nutrient function and requirements, and energy utilization in various species. Specific topics include different classes and properties of nutrients, differences in digestive mechanisms in monogastric vs. ruminant animals, and how carbohydrates, lipids, proteins, minerals, and vitamins contribute to the nutrient requirements of animals. Prerequisite: ANSC 100, ANSC 221, and CHEM 104 and CHEM 105.

ANSC 224 Animal Reproduction and Growth credit: 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/224/)
Study of the basic principles of reproduction, lactation, growth, and hormonal regulation in animals as well as humans, including cell growth and differentiation, processes of reproduction, biotechnological methods of reproductive control, manipulation, performance enhancement of lactation and growth. Prerequisite: ANSC 100, ANSC 221.

ANSC 231 Evolution of Sex credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/231/)
Focuses on the reproductive strategies and reproductive life cycles of animal species beginning with lower invertebrates, then to insects, amphibians, reptiles, birds and mammals. Discussion will focus on how the ancient environment influenced reproductive strategies of early animals and how animal species are adapting to the environmental challenges they face today.

ANSC 250 Companion Animals in Society credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/250/)
Explores the current and historical functions and influences of companion animals in American society. Topics include the evolution of animal protection, the use of assistance and service animals, and the growth of the pet supply industry. Controversial issues which are of current concern to society will also be examined.
This course satisfies the General Education Criteria for: Cultural Studies - Western

ANSC 251 Epidemics and Infectious Diseases credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/251/)
Introduces students to the major past and present causes of plague in humans as well as agricultural and companion animals. Smallpox, yellow fever, bubonic plague, polio, SARS, AIDS, West Nile encephalitis, Zika, PRRS, PEDV, foot and mouth disease, bovine spongiform encephalopathy, and others will be discussed. The characteristics of each disease, including mode of transmission, symptoms, duration of illness, and mortality rates will be presented. History and probability of recurrence will also be explored. Prerequisite: Some knowledge in anatomy and physiology may be helpful.

ANSC 255 Animal Ethics credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/255/)
Explores ethical issues raised by human use of animals. Students will be asked to apply philosophical perspectives to historical and current animal issues such as raising animals for food production, the keeping of pets, management and use of wild animals, use of animals in research, animal breeding and biotechnology, and animal control.
This course satisfies the General Education Criteria for: Humanities - Hist Phil
ANSC 256 Horse's Role in Human History credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/256/)
Provides an understanding of the crucial roles that horses have played in the development and expansion of human civilization, including how the role of the horse in culture and society has changed throughout history. Topics addressed include an understanding of the evolution and domestication of horses, use of horses for transportation, sport, warfare and power, and the impact of horses on societal issues facing the world today.

ANSC 293 Internship Off Campus credit: 1 to 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/293/)
Supervised, off-campus learning experience in an animal-related enterprise. May be repeated to a maximum of 12 hours. No more than 12 hours of special problems, research, thesis and/or individual studies may be counted toward degree in ACES. Prerequisite: Good academic standing; ANSC 100.

ANSC 294 Intern On Campus Practical Exp credit: 1 to 5 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/294/)
Supervised, on-campus learning experience associated with subject matter specific to animal sciences. Approved for Letter and S/U grading. May be repeated to a maximum of 12 hours. No more than 12 hours of special problems, research, thesis and/or individual studies may be counted toward degree in ACES. Prerequisite: Good academic standing; ANSC 100.

ANSC 295 UG Research or Thesis credit: 1 to 5 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/295/)
Individual research in animal sciences. May be repeated in the same or separate terms to a maximum of 12 hours. Independent Study courses are limited to 12 hours total applying to a degree in ACES. Prerequisite: Minimum GPA of 2.5; not open to students on probation; consent of instructor.

ANSC 298 Animal Science Careers and Professional Development credit: 1 Hour. (https://courses.illinois.edu/schedule/terms/ANSC/298/)
Designed to help students prepare for and investigate different career options in Animal Sciences. Professional development opportunities like undergraduate research, internships, and study abroad will be discussed. Prerequisite: Sophomore standing.

ANSC 299 Animal Mgt Field Studies credit: 1 or 2 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/299/)
Field studies of farms and service industries; discusses and demonstrates management practices on commercial farms. Trip normally taken during spring break. May be repeated up to 5 hours in the same term and 12 hours maximum if topics vary.

ANSC 301 Food Animal Production, Management, and Evaluation credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/301/)
Provides an overview of how nutrition, genetics, and environment affect beef cattle, swine, and sheep growth, development, and end-product quality and value. Students get hands-on experience evaluating and determining value of live animals and carcasses. Prerequisite: Credit or concurrent enrollment in ANSC 223 and ANSC 224; or consent of instructor.

ANSC 303 Equine Science credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/303/)
Understand and apply current scientific research and principles of equine science to intensive horse production. An in-depth approach to equine reproductive physiology, nutrition, anatomy and exercise physiology will be followed using a combined lecture and laboratory format. Emphasis on current research and hands-on techniques. Prerequisite: ANSC 206, ANSC 222 or equivalent, and credit or concurrent enrollment in ANSC 224 or equivalent; or consent of instructor.

ANSC 304 Companion Animal Management credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/304/)
Provides an advanced overview of companion animal biology through consideration of the physical structure, nutrition, behavior, and reproduction of animal species most commonly kept as companions. Course content is applied to discussion of best management practices and basic preventive health care. Course content is largely focused on cats and dogs, although other mammals, birds and reptiles are briefly considered. Legal and economic issues, ethical considerations, and career opportunities associated with companion animals are also incorporated into course discussion. Credit is not given for both ANSC 307 and ANSC 207. Prerequisite: ANSC 221, ANSC 222, ANSC 223, ANSC 224 or consent of instructor.

ANSC 305 Meat Production and Marketing credit: 2 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/305/)
General approach to meat utilization with emphasis on selecting, grading, cutting, and pricing meat for the retail, restaurant, and food service industry. This course includes laboratory and may use field trips to establishments to highlight course concepts.

ANSC 306 Meat Selection and Grading credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/306/)
Study characteristics associated with the value of carcasses, primal and retail cuts from meat animals; emphasize USDA grading and specifications as well as written communication. Field trips to meat packing plants are required. Prerequisite: ANSC 215, Section A.

ANSC 307 Advanced Livestock Evaluation credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/307/)
Advanced instruction in the selection of breeding animals of beef, sheep, and swine species and in the evaluation of market animals for slaughter. This course requires visits to farms, related companies, and events to observe the latest techniques and scientific principles associated with livestock selection and evaluation. Prerequisite: ANSC 211 or consent of instructor.

ANSC 308 Horse Appraisal credit: 2 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/308/)
Advanced course for students interested in improving their performance and conformation evaluation skills; provides exposure to the horse show industry and the career opportunities associated with this facet of the horse industry; students may compete in intercollegiate judging contests.
ANSC 314 Adv Dairy Cattle Evaluation credit: 2 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/314/)
Advanced instruction in the selection of breeding dairy animals. Involves visits to farms, related companies and events to observe the latest
principles and scientific principles associated with dairy cattle selection and evaluation. Field trips for cattle judging are required. Prerequisite:
ANSC 204 or ANSC 215 or consent of instructor.

ANSC 322 Livestock Feeds and Feeding credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/322/)
Livestock feeds and practical feeding applications for livestock will be addressed. Feed identification and ration formulation will be strongly
emphasized. One session of this class will take place at the UIUC Feed Mill. Prerequisite: ANSC 223.

ANSC 331 Biology of Reproduction credit: 2 to 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/331/)
Study of comparative reproduction, lactation, behavior, reproductive strategies, assisted reproduction, and reproductive diseases in domestic and wild
animals including mammals, birds, reptiles, and amphibians. Prerequisite: Sophomore standing; IB 104 or one introductory level biology course.

ANSC 350 Cellular Metabolism in Animals credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/350/)
Principles and regulation of cellular metabolism in animals, emphasizing energy derivation and its relationship to domestic animal and food
production. Prerequisite: CHEM 104, CHEM 105, and ANSC 221 or equivalent.

ANSC 360 Technology and Management: The Basics credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/360/)
Overview of agricultural systems' problems and application of different tools and sensors on problem-solving and efficient systems' design.

ANSC 363 Behavior of Domestic Animals credit: 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/363/)
Introduction to concepts of animal behavior with emphasis on domestic animals; lecture and discussion. Prerequisite: ANSC 100.

ANSC 366 Animal Behavior credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/366/)
Same as ANTH 342, IB 329, and PSYC 329. See IB 329.

ANSC 370 Companion Animal Policy credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/370/)
This course provides an overview of public policy with respect to the use and treatment of companion animals in the United States. Current and
alternative policies are considered in terms of their effectiveness in improving or otherwise altering the treatment of companion animals. The
influences of animal protection organizations, consumer groups, politicians, the scientific community, and other stakeholders on the development and
enforcement of policies are examined in detail. Prerequisite: ANSC 250.

ANSC 396 UG Honors Research or Thesis credit: 1 to 5 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/396/)
Independent study, under the supervision of a faculty member, on a problem of appropriate scope and character that culminates in writing a thesis.
Intended primarily for honors students who plan on conducting research or pursuing graduate study. Thesis projects must be supervised by a faculty
member and reviewed by a departmental committee. Students must present a satisfactory thesis to receive credit. May be repeated to a maximum
of 5 hours in the same semester and to a total maximum of 12 hours. No more than 12 hours of special problems, research, thesis and/or individual
studies may be counted toward degree in ACES. Prerequisite: Junior standing, minimum GPA of 3.4; consent of a faculty member.

ANSC 398 UG Experiential Learning credit: 1 to 5 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/398/)
Student-directed experiential learning on special topics directly pertaining to subject matter in animal sciences. Students are required to complete
a Memorandum of Agreement prior to enrolling in this course. Additional fees may apply. See Class Schedule. Approved for Letter and S/U grading.
May be repeated up to 5 hours per semester, up to a maximum of 12 total hours. Independent Study courses are limited to 12 hours total applying to a
degree in ACES.

ANSC 400 Dairy Herd Management credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/400/)
The technology of modern milk production practices; application of principles in nutrition, physiology, economics, health and hygiene, waste
management, and facilities design for efficient dairy herd management systems. 3 undergraduate hours. 3 graduate hours. Prerequisite: ANSC 201 or
consent of instructor.

ANSC 401 Beef Production credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/401/)
The principles of the management of beef cattle enterprises. Applies science and technology to the breeding, selection, feeding, health and production of
beef and beef products. Emphasizes the use of research findings in decision-making. 3 undergraduate hours. 3 graduate hours. Credit is not given for both ANSC 401 and ANSC 213. Prerequisite: ANSC 223 or equivalent.

ANSC 402 Sheep and Goat Production credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/402/)
The objective of this course is to understand the core principles of sheep and goat production. This course covers topics including common breeds,
reproduction, breeding and selection, nutrition, health, fiber production, and management. Some lectures will be at the University farms. Other lectures
will include demonstrations of sheep and goats evaluation principles, neonatal lamb and kid health, body condition scoring, and lamb and goat
cooking. 3 undergraduate hours. 3 graduate hours. Prerequisite: ANSC 223 or equivalent.

ANSC 403 Pork Production credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/403/)
Applies science and technology to the selection, breeding, feeding, housing and management of swine in a production enterprise; emphasizes use of
research findings in decision making. 3 undergraduate hours. 3 graduate hours. Credit is not given for both ANSC 403 and ANSC 213. Prerequisite:
ANSC 221 or equivalent; ANSC 223 or equivalent; ANSC 467; and ANSC 224 or equivalent or ANSC 431.

ANSC 404 Poultry Science credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/404/)
Basic principles of genetics, physiology, nutrition, and health of avian species; the application of science and technology in solving the breeding,
nutrition, disease, housing, and other management problems encountered in commercial egg and poultry meat production. 3 undergraduate hours. 3
graduate hours.
ANSC 405 Advanced Dairy Management credit: 2 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/405/)
Advanced dairy management compliments the four other classes offered in the dairy certificate program featuring applied management principles and practices needed in modern dairy production. 2 undergraduate hours. 2 graduate hours. Prerequisite: ANSC 201 or equivalent or consent of instructor.

ANSC 406 Zoo Animal Conservation Sci credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/406/)
Topics related to the conservation, physiology and management of exotic animal species in a captive setting will be addressed. These include conservation biology, population genetics, nutrition, reproduction (natural and assisted), behavior, exhibitry, environmental enrichment and veterinary care. Also covers taxonomy, zoo research, the role of zoos in conservations, and the ethics of maintaining captive animals. 3 undergraduate hours. 3 graduate hours. One Saturday field trip may be required. Prerequisite: ANSC 207 or ANSC 307.

ANSC 407 Animal Shelter Management credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/407/)
Basic management concepts related to maintaining the physical and behavioral health of companion animals in a shelter setting will be addressed. Population dynamics and management will be heavily emphasized. Utilizes practical resources available through local and national animal welfare organizations. Two class sessions will take place at the Champaign County Humane Society. One Saturday field trip is required. 3 undergraduate hours. 3 graduate hours. Prerequisite: ANSC 207 or ANSC 307.

ANSC 409 Meat Science credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/409/)
Fundamental biological principles that influence composition, processing, preservation, and quality of meat and meat products. 3 undergraduate hours. 3 graduate hours. Prerequisite: ANSC 221, IB 104, or equivalent.

ANSC 420 Ruminant Nutrition credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/420/)
Physiology and microbiology of digestion in the ruminant, and biochemical pathways of utilization of the absorbed nutrients for productive purposes. 3 undergraduate hours. 3 graduate hours. Prerequisite: ANSC 223 or equivalent.

ANSC 421 Minerals and Vitamins credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/421/)
Nutritional implications and metabolic roles of minerals and vitamins in animal metabolism. The course is designed to instill a basic understanding of mineral and mineral functions, absorption, metabolism, and excretion. Research methodologies used in the study of mineral nutrition will also be discussed. 3 undergraduate hours. 3 graduate hours. Prerequisite: ANSC 223 or equivalent, credit or concurrent registration in MCB 450 or ANSC 350, or consent of instructor.

ANSC 422 Companion Animal Nutrition credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/422/)
Digestive physiology and basic nutritional considerations of companion animals, with primary focus on dogs and cats. Topics discussed include nutritional idiosyncrasies of dogs and cats, the importance of nutrition in various physiological states, and nutrient needs during disease. Information on pet food regulations, common ingredients and formulation, manufacturing methods, and trends in the pet food industry will also be covered. Same as NUTR 422. 3 undergraduate hours. 3 graduate hours. Prerequisite: ANSC 223 or equivalent.

ANSC 423 Advanced Dairy Nutrition credit: 2 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/423/)
All aspects of dairy cattle nutrition will be discussed including nutrients, phase feeding (milk curve analysis, dry matter intake, and body weight loss), dry and transition cow programs, forage feeding systems, feed delivery approaches, metabolic disorders related to nutrition, and application of various dairy feeding guides. 2 undergraduate hours. 2 graduate hours. Prerequisites: ANSC 201 or equivalent, or consent of instructor.

ANSC 424 Pet Food & Feed Manufacturing credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/424/)
Integrates principles of animal nutrition with various aspects pertaining to pet food and animal feed manufacturing. Topics discussed in this course include processing technologies (e.g., extrusion, retorting, baking) involved in the manufacturing of pet foods and animal feeds, principles of diet formulation and nutritional guidelines, and an overview of regulatory affairs, quality control, and good manufacturing practices. This course includes two field trips to a pet food manufacturing facility and a food and feed ingredient company. Same as NUTR 424. 3 undergraduate hours. 3 graduate hours. Prerequisite: Required - ANSC 223; Recommended - ANSC 322 and ANSC 422.

ANSC 431 Advanced Reproductive Biology credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/431/)
Course is an upper-level undergraduate or entry-level graduate course dealing with reproductive biology. It will include the study of basic cell biology of reproduction, lactation, growth and hormone regulation of domestic and non-domestic animals as well as humans, including biotechnology methods of reproduction control, manipulation, performance enhancement of lactation and growth, and disease control. 3 undergraduate hours. 3 graduate hours. Prerequisite: ANSC 244 or equivalent.

ANSC 435 Milk Quality and Udder Health credit: 2 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/435/)
An advanced course on the physiological basis of mammary growth, milk secretion, and udder health. Topics covered includes mammary gland anatomy, hormonal control, causes and control of mastitis, milk harvesting, and milk quality. The course will be delivered via CD and web-based synchronous discussion. Students should have a basic course in dairy/animal sciences, or physiology, or consent of the instructor before taking this course. 2 undergraduate hours. 2 graduate hours. Prerequisite: ANSC 201 or equivalent or consent of instructor.

ANSC 437 Adv Reproductive Management credit: 2 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/437/)
The focus of this course is advanced techniques and technologies used to manage production livestock. The course will emphasize advanced and emerging technologies such as embryo transfer, cloning, semen sexing, and ultrasound pregnancy diagnosis and fetal sexing and innovations in existing procedures including artificial insemination, reproductive health management, and estrus synchronization. Implementation of existing and emerging technologies and research and discovery will be covered for individuals focusing on careers in livestock production, clinical veterinary medicine, education, technical service/support, and research and development. 2 undergraduate hours. 2 graduate hours. Prerequisite: ANSC 331 or equivalent, or consent of instructor.
ANSC 223 Technologies for Manipulating Growth to Enhance Animal Production. 3 or 4 undergraduate hours. 4 graduate hours. Prerequisite: ANSC 224 or equivalent.

ANSC 440 Applied Statistical Methods I credit: 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/440/)
Same as ABE 440, CPSC 440, FSHN 440, NRES 440, and NUTR 440. See CPSC 440.

ANSC 441 Human Genetics credit: 3 or 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/441/)
Same as ANTH 441. See ANTH 441.

ANSC 442 Introduction to Data Analytics credit: 2 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/442/)
Introduces students to standard approaches commonly used to analyze science and engineering data; to the strengths and limitations of the approaches; and to gain confidence in the interpretation of results. At the end of this course, students will be able to analyze a wide range of datasets using appropriate models, and draw robust conclusions. 2 undergraduate hours. 2 graduate hours. Credit is not given for ANSC 442 and ANSC 445.

ANSC 444 Applied Animal Genetics credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/444/)
Principles of heredity and their application to the problems of animal improvement. 3 undergraduate hours. 3 graduate hours.

ANSC 445 Statistical Methods credit: 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/445/)
Design and analysis of experiments: multiple regression, method of fitting constants, factorial experiments with unequal subclass numbers, analysis of covariance, experimental design; computer applications to agricultural experiments using statistical packages. Same as ABE 445 and NRES 445. 4 undergraduate hours. 4 graduate hours. Prerequisite: CPSC 440, or equivalent.

ANSC 446 Population Genetics credit: 3 or 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/446/)
Conceptual and mathematical approach to the genetics of populations: estimation of allele and genotype frequencies; Hardy-Weinberg principle; measures of genetic diversity and distance; selection; non-random mating; genetic drift; mutation; neutral theory; migration and population subdivision; linkage and recombination; coalescence and phylogehenic inference. Applications to animals, plants, human health and wildlife conservation. Same as IB 416. 3 or 4 undergraduate hours. 3 or 4 graduate hours. Students desiring 4 hours credit do additional work in some area of population genetics. Prerequisite: An introductory genetics course (ANSC 221 or IB 204); one of MATH 220, MATH 221, or MATH 234; or consent of instructor.

ANSC 447 Advanced Genetics and Genomics credit: 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/447/)
Current principles and methods in genetics and genomics to better understand genome function, genome evolution, the genetic architecture of complex traits, the genetic basis of human and animal diseases, and animal productivity. To build a strong foundation for the application of novel genomic tools, the course will provide an overview of main concepts in genetics and genomics, including gene-environment interaction and epigenetic modifications. The focus of the course will be on mammals, but novel applications of the new sequencing technologies to other systems will be discussed. In addition to the presentation of scientific concepts and discoveries, the course will include a significant practical component. Students will learn software programs used for genetic mapping and bioinformatics analysis, will review and present scientific papers, and will write a research paper proposing their own experiments. 4 undergraduate hours. 4 graduate hours. Prerequisite: ANSC 221, MCB 150, or IB 150.

ANSC 448 Math Modeling in Life Sciences credit: 3 or 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/448/)
Introduction to deterministic and stochastic mathematical models for the life sciences, statistical methods for fitting and testing models, and computer simulation programs. Applications to populations, processes, and products of animals, plants, and humans. Same as IB 487 and STAT 458. 3 or 4 undergraduate hours. 3 or 4 graduate hours. Students desiring 4 hours credit do additional work in some area of mathematical modeling in the life sciences. Prerequisite: IB 104; a course in calculus, and a course in computer sciences; or consent of instructor.

ANSC 449 Biological Modeling credit: 3 or 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/449/)
Same as CPSC 448, GGIS 468, and IB 491. See GGIS 468.

ANSC 450 Comparative Immunobiology credit: 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/450/)
Advanced concepts of immunophysiology and immunogenetics. Immunophysiology with an emphasis on immune-neuroendocrine interactions. The molecular and cellular basis of self-nonself recognition with an emphasis on the major histocompatibility complex in vertebrates and innate immunity in both vertebrates and invertebrates. The mucosal immune system, which requires a complex interplay between innate and acquired immunity to protect mucosal surfaces exposed to the environment. A working knowledge of genetics and cellular and molecular biology is recommended. Same as MCB 442 and PATH 410. 4 undergraduate hours. 4 graduate hours.

ANSC 451 Microbes and the Anim Indus credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/451/)
Fundamental aspects of the ecology of microorganisms and their biochemical activities related to the degradation of organic matter with emphasis on the gastrointestinal tract of production animals. 3 undergraduate hours. 3 graduate hours. Prerequisite: MCB 100, and ANSC 350, MCB 300, MCB 424, or equivalent.

ANSC 452 Animal Growth and Development credit: 3 or 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/452/)
Basic principles of animal growth from early fetal development through typical marketing ages for the major domestic animal species. Topics discussed include molecular and cellular determinants of tissue development and whole animal growth, with coverage of current and future technologies for manipulating growth to enhance animal production. 3 or 4 undergraduate hours. 4 graduate hours. Prerequisite: ANSC 221, ANSC 222, ANSC 223, and ANSC 224.
ANSC 453 Stem Cell Biology credit: 3 or 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/453/)
The history of stem cell biology as well as up-to-date topics in stem cell research will be presented and discussed with emphasis on experimental
approaches. Each student is expected to present research articles relative to each focus area and lead the discussion for the whole class every
week. Topics include Molecular Reproductive Biology, Genetics, Physiology of both adult- and embryo-derived stem cells, and their application to
Biotechnology and Regenerative Medicine. 3 undergraduate hours. 4 graduate hours. Prerequisite: STAT 100 or equivalent, MCB 316, ANSC 221,
ANSC 224, or equivalent; or consent of instructor.

ANSC 454 Neuroimmunology credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/454/)
Provides current information about the fundamental structures and functions of the 'neuroimmune' system. Later sessions address applied
and contemporary neuroimmunology through research-focused lectures paired with 'journal club-style' discussions of recent, transformative
publications. A working knowledge of basic immunology, anatomy, physiology, and cell and molecular biology is recommended. Same as NEUR 454. 3
undergraduate hours. 3 graduate hours. Prerequisite: ANSC 221, ANSC 222, ANSC 450 or equivalents.

ANSC 460 The Secret Life of Animals: How Technology Can Help You Observe It and Take Action credit: 3 Hours. (https://courses.illinois.edu/
schedule/terms/ANSC/460/)
Fundamentals of animal-environment interactions as the basis for Precision Management of Animals (PMA) Systems' design. The course will explore
the value added by those technologies, challenges, and opportunities. Students will develop a PMA project to uncover the hidden details of animal
production. 3 undergraduate hours. 3 graduate hours. Prerequisite: ANSC 360.

ANSC 464 Physiology of Animal Stress & Disease credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/464/)
Advanced interdisciplinary concepts of animal physiology and behavior during stress and disease. Lectures and discussions will cover multi-
system interactions regulating immune, microbial, endocrine, and behavioral responses to external stressors, pathogen infection, and idiopathic
disease. Topics include: neuroendocrine regulation of immunophysiology and behavior, pathogenic and behavioral response to disease, bidirectional
communication between the microbiome and central nervous system, developmental disruptions during gestation, cancer biology, and metabolic
diseases. 3 undergraduate hours. 3 graduate hours. Prerequisite: ANSC 221 or equivalent, and ANSC 222 or equivalent; or consent of instructor.

ANSC 467 Applied Animal Ecology credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/467/)
An in-depth multidisciplinary approach (physiology, behavior, immunology, neuroscience) to understanding animal-environment interactions (including
thermal, air, microbic, photic and behavioral factors) as basis for prescribing practical environments for keeping animals. Courses in physiology,
biology, nutrition, microbiology, and genetics are recommended. 3 undergraduate hours. 3 graduate hours. Prerequisite: ANSC 221 or equivalent,
ANSC 222 or equivalent, and ANSC 223 or equivalent; or consent of instructor.

ANSC 470 Companion Animal Cruelty Investigations credit: 2 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/470/)
Animal cruelty is an unfortunate reality across the country and around the world. Proper investigation and prosecution of these cases is crucial to
preventing these acts in the future. This course will teach the concepts and processes of animal cruelty investigations and prosecution, largely
focusing on companion animals. 2 undergraduate hours. 2 graduate hours. Prerequisite: ANSC 250.

ANSC 471 ANSC Leaders & Entrepreneurs credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/471/)
Designed to familiarize students with the tools and skills necessary for successful business operation in industry and entrepreneurial environments
including food animal production farms. The overall aim is to explore how enhanced interpersonal and leadership skills facilitate positive relations
in business. Students will design a business plan, an entrepreneurial enterprise, that will be read by an external committee of professors, community
members, and business owners and evaluated for its viability and creativity. This course is relevant for leaders as well as future entrepreneurs
interested in acquiring valuable skills that may be applied to many careers. 3 undergraduate hours. 3 graduate hours. Prerequisites: Any advanced
composition course.

ANSC 498 Integrating Animal Sciences credit: 2 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/498/)
Introduction to the theoretical basis of and skills associated with leadership, inquiry, and collaborative learning. Capstone experience in integrating
knowledge, practicing skills, and applying theory through collaborative projects that address current issues in animal sciences. Projects relate to the
impact of animals and animal use on humans and societal issues facing the world today. 2 undergraduate hours. No graduate credit. Prerequisite:
ANSC 298. Restricted to Animal Sciences major(s). Restricted to students with Senior class standing.

ANSC 499 Seminar credit: 1 to 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/499/)
Group discussion or an experimental course on a special topic in animal sciences. 1 to 4 undergraduate hours. 1 to 4 graduate hours. May be repeated
if topics vary.

ANSC 509 Muscle Biology credit: 2 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/509/)
Microstructure and chemical composition of muscle tissue; chemistry and biosynthesis of muscle and connective tissue proteins; and biochemical
aspects of muscle contraction and rigor mortis. Prerequisite: ANSC 452, ANSC 409, and ANSC 350 or MCB 450.

ANSC 520 Protein and Energy Nutrition credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/520/)
Physiological aspects of protein and amino acids, fats and fatty acids, and carbohydrates as applied to higher animals; includes classification,
digestion, absorption, utilization, metabolism, and dietary deficiencies and excesses. Same as NUTR 520. 3 graduate hours. No professional credit.
Prerequisite: MCB 450 or equivalent and ANSC 222 or equivalent.

ANSC 521 Regulation of Metabolism credit: 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/521/)
Same as FSHN 511 and NUTR 511. See NUTR 511.
ANSC 522 Advanced Ruminant Nutrition credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/522/)
Physiological and microbiological aspects of ruminant digestion and their influence on the metabolism of the extraruminal tissues; interpretation of nutritive requirements in terms of rumen microbial activities; and evaluation of research techniques. Offered in alternate years. Prerequisite: ANSC 420 or equivalent, and ANSC 350, MCB 450, or equivalent.

ANSC 523 Techniques in Animal Nutrition credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/523/)
Discusses and applies methods of laboratory analysis and animal experimentation frequently used in nutrition research. Same as NUTR 523. 3 graduate hours. No professional credit. Prerequisite: Courses in nutrition, physiology, and biochemistry and consent of instructor.

ANSC 524 Nonruminant Nutrition Concepts credit: 2 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/524/)
Review of literature in nonruminant nutrition. Emphasizes basic concepts associated with food intake, carbohydrate and fat utilization, protein quality, bioavailability of nutrients, and diet formulation. Same as NUTR 524. 2 graduate hours. No professional credit. Prerequisite: Consent of instructor.

ANSC 525 Topics in Nutrition Research credit: 1 to 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/525/)
Same as FSHN 510 and NUTR 510. See NUTR 510.

ANSC 526 Adv Companion Animal Nutrition credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/526/)
Students will learn how to effectively apply advanced concepts related to pet nutrition and disease, including the metabolism within healthy and diseased dogs and cats, how nutrition may aid in preventing and treating disease, and the science behind pet food formulation and production. Students will develop critical-thinking and problem-solving skills by writing and reviewing grant proposals and delivering an oral presentation. Same as NUTR 526. 3 graduate hours. No professional credit. Prerequisite: ANSC 422 or consent of instructor.

ANSC 533 Repro Physiol Lab Methods credit: 1 to 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/533/)
Laboratory methods used in reproductive physiology studies, such as blood sampling, large animal surgery, collection of tissues and gametes, embryo recovery, in vitro fertilization, tissue culture, hormone measurements, and directed individual research problems. Same as MCB 533 and CB 533. Prerequisite: Consent of instructor.

ANSC 541 Regression Analysis credit: 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/541/)
Same as CPSC 541. See CPSC 541.

ANSC 542 Applied Bioinformatics credit: 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/542/)
Introduction to theoretical and applied aspects of bioinformatics. Topics include genomic and proteomic databases, sequence alignment and search algorithms (e.g., BLAST, FASTA, CLUSTAL W), predictive methods in DNA sequence, machine-learning techniques (e.g., Hidden Markov Models) and data mining, biomolecular structure and its prediction, molecular evolution and phylogenetic reconstruction, structural genomics and phylogenomics. Concepts are complemented with hands-on experience with computational biology databases and bioinformatic tools. Same as CPSC 569 and IB 506. Prerequisite: Graduate level status or consent of instructor.

ANSC 543 Bioinformatics credit: 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/543/)
Same as CHBE 571, MCB 571, and STAT 530. See CHBE 571.

ANSC 545 Statistical Genomics credit: 3 or 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/545/)
This course presents current statistical approaches to analyze DNA microarray, quantitative trait loci and proteomic data and understand the genetic architecture of complex phenotypes including health, performance and behavior. DNA microarray studies measure the expression of thousands of genes simultaneously. Quantitative trait loci (QTL) mapping studies detect associations between genomic regions and phenotypes. Results from these and proteomic studies help identify and quantify genes, regulators and products leading to drug, biotechnology and scientific discoveries. Same as CPSC 545 and IB 507. Prerequisite: Graduate level course in Statistics and graduate level course in Molecular Biology.

ANSC 554 Immunobiological Methods credit: 3 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/554/)
Same as PATH 544. See PATH 544.

ANSC 561 Animal Stress Physiology credit: 2 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/561/)
Examines animal's physiological and behavioral adaptations to stress. Prerequisite: Consent of the instructor.

ANSC 590 Animal Sciences Seminar credit: 0 to 2 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/590/)
Discussions of current research and literature. Registration for 0 to 2 hours each term is expected for animal sciences graduate students. Same as NUTR 590. 0 to 2 graduate hours. No professional credit. Approved for Letter and S/U grading. May be repeated to a maximum of 2 hours for Masters students and 4 hours for PhD students.

ANSC 591 Grad Bioinformatics Seminar credit: 0 to 2 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/591/)
Same as CPSC 591 and INFO 591. See INFO 591.

ANSC 592 Adv Topics in Animal Science credit: 1 to 4 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/592/)
Selected topics associated with teaching, research, and production related to the animal industry. Prerequisite: Consent of instructor.

ANSC 593 Res Studies in Animal Sciences credit: 1 to 8 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/593/)
Directed and supervised study of selected research topics in Animal Sciences. 1 to 8 graduate hours. No professional credit. Approved for Letter and S/U grading. May be repeated in the same or separate terms to a maximum of 8 hours. Prerequisite: Consent of instructor.

ANSC 599 Thesis Research credit: 0 to 16 Hours. (https://courses.illinois.edu/schedule/terms/ANSC/599/)
Approved for S/U grading only. May be repeated.

Information listed in this catalog is current as of 12/2022