Agricultural and Biological Eng (ABE)

ABE Class Schedule

Courses

ABE 100   Intro Agric & Biological Engrg   credit: 1 Hour.

Introduction to the engineering profession with career opportunities in the agricultural and biological engineering discipline. Concepts necessary for becoming a successful engineer including time management, design concepts, ethics, and teambuilding. Familiarization with laboratories, computer facilities, internships, and other opportunities. Team design experience. Emphasis on technical communication and problem-solving skills as well as career planning.

ABE 141   ABE Principles: Biological   credit: 2 Hours.

Principles of biology relevant to agriculture, food, energy, and the environment, including microbiology, biochemistry, genetics, plant and animal systems, and ecosystems. Case studies of engineering applications where these biological principles have been taken into account or leveraged for the purpose of design.

ABE 223   ABE Principles: Machine Syst   credit: 2 Hours.

Machinery systems for off-road applications: internal combustion engines; fluid power; tractors, and traction; chemical application; grain harvesting. Prerequisite: One of MATH 220, MATH 221, MATH 234.

ABE 224   ABE Principles: Soil & Water   credit: 2 Hours.

Engineering principles and methods of design and management of natural resources and environmental systems; watershed and hydrologic cycle; infiltration and surveying; runoff and erosion; water quality; non-point source pollution. Prerequisite: One of MATH 220, MATH 221, MATH 234.

ABE 225   ABE Principles: Bioenvironment   credit: 2 Hours.

Principles of environmental control for biological structures: psychrometrics; mass and heat transfer through buildings; ventilation requirements. Prerequisite: One of MATH 220, MATH 221, MATH 234.

ABE 226   ABE Principles: Bioprocessing   credit: 2 Hours.

Principles of bioprocess engineering applied to food and agricultural products: material balances; fluid flow; heat and mass transfers; drying; evaporation; fermentation; distillation; process simulation. Prerequisite: One of MATH 220, MATH 221, MATH 234.

ABE 341   Transport Processes in ABE   credit: 3 Hours.

Principles of transport processes involving momentum, heat, and mass as applied to biological systems in agriculture, food, energy, and the environment. Credit is not given for both ABE 341 and CHBE 421. Prerequisite: ABE 223, ABE 224, ABE 225, ABE 226, and PHYS 213.

ABE 361   Off-Road Machine Design   credit: 3 Hours.

Design and development concepts of agricultural and industrial machines; analysis and synthesis of tillage, planting, harvesting, chemical application, material handling mechanisms, and precision farming tools. Prerequisite: ABE 223 and TAM 212.

ABE 397   Independent Study   credit: 1 to 4 Hours.

Individual research, special problems, thesis, development or design work under the supervision of a member of the faculty. May be repeated to a maximum of 8 hours. Prerequisite: Consent of instructor.

ABE 398   Special Topics   credit: 1 to 3 Hours.

Subject offerings of new and developing areas of knowledge in agricultural and biological engineering intended to augment the existing curriculum. See Class Schedule or departmental course information for topics and prerequisites. May be repeated in the same or separate term if topics vary to a maximum of 12 hours.

ABE 425   Engrg Measurement Systems   credit: 4 Hours.

Principles of instrumentation systems, including sensing, signal conditioning, computerized data acquisition, test design, data analysis and synthesis. 4 undergraduate hours. 4 graduate hours. Credit is not given for both ABE 425 and ME 360. Prerequisite: ECE 205.

ABE 430   Project Management   credit: 2 Hours.

Engineering team effectiveness; project definition; assessing related technologies; marketing and business planning related to engineering; budgeting and financial analyses of engineering projects; safety, ethics and environmental considerations; intellectual property; engineering proposal presentation. Same as TSM 430. 2 undergraduate hours. 2 graduate hours.

ABE 436   Renewable Energy Systems   credit: 3 or 4 Hours.

Renewable energy sources and applications, including solar, geothermal, wind, and biomass. Renewable energy's role in reducing air pollution and global climate change. Capstone project to design a system for converting renewable energy into thermal or electrical energy. 3 undergraduate hours. 4 graduate hours. Credit is not given for both ABE 436 and TSM 438. Prerequisite: PHYS 211.

ABE 446   Biological Nanoengineering   credit: 3 or 4 Hours.

Nanodevice design through organization of functional biological components; bio-molecular function and bioconjugation techniques in nanotechnology; modulation of biological systems using nanotechnology; issues related to applying biological nanotechnology in food energy, health, and the environment. 3 undergraduate hours. 4 graduate hours. Prerequisite: MCB 150.

ABE 454   Environmental Soil Physics   credit: 3 Hours.

Provides the theoretical basis for understanding and quantifying the physical, hydrological, geotechnical, and thermal properties of soil in relation to environmental processes. Topics include general soil properties as a porous media, particle size, soil structure and aggregation, water retention and potential, flow in saturated soil, flow in an unsaturated soil, soil temperature and heat flow, soil mechanics, infiltration, and soil-plant-water relations. 3 undergraduate hours. 3 graduate hours. Prerequisite: TAM 335 or NRES 201 or consent of instructor.

ABE 455   Erosion and Sediment Control   credit: 2 Hours.

Processes, estimation, and control of soil erosion by water, wind and resultant sedimentation. Upland, in-channel, urban, agricultural, disturbed (both military training and mining), and forested environments. Capstone experience in site planning and design. 2 undergraduate hours. 2 graduate hours. Prerequisite: CEE 350 or NRES 401; CEE 380 or NRES 201.

ABE 456   Land & Water Resources Engrg   credit: 3 or 4 Hours.

Hydrology, hydraulics, design, construction and cost estimating of structures for the conservation and quality control of soil and water resources; relationship of topography, soils, crops, climate, and cultural practices in conservation and quality control of soil and water for agriculture. 3 undergraduate hours. 3 or 4 graduate hours. Prerequisite: Credit or concurrent registration in TAM 335.

ABE 457   NPS Pollution Processes   credit: 2 Hours.

Principles, concepts, and analysis of processes for nonpoint source pollution involving sediment, inorganic and organic chemicals, and microbial pathogens; hydrologic and pollutant interactions, pollutant fate and transport processes from storm water runoff and percolation; impact of pollutant transport on receiving water and ecosystems. 2 undergraduate hours. 2 graduate hours. Prerequisite: ABE 224 or CEE 350.

ABE 458   NPS Pollution Modeling   credit: 2 Hours.

Concepts, principles, and application of modeling for assessment and management of agricultural nonpoint source pollution. Modeling of agroecosystems and land use impacts on hydrologic and water quality response of upland catchments. Model selection, calibration, validation, and application for comparative analysis. Case studies in current watershed management issues, with a focus on agricultural waste and nutrient management, using existing field and watershed nonpoint source pollution models. 2 undergraduate hours. 2 graduate hours. Prerequisite: ABE 457.

ABE 459   Drainage and Water Management   credit: 3 or 4 Hours.

Design, construction, performance, and maintenance of agricultural drainage systems to meet both production and water quality objectives. Modeling drainage systems. Principles of conservation drainage. 3 undergraduate hours. 3 or 4 graduate hours. Prerequisite: Credit or concurrent registration in TAM 335.

ABE 463   Electrohydraulic Systems   credit: 3 Hours.

Engineering principles of electrohydraulic control systems related to off-road vehicles. Basics of fluid power systems, concepts of electrohydraulic systems and controls, analysis and design of electrohydraulic control systems, and applications of electrohydraulic control. 3 undergraduate hours. 3 graduate hours. Prerequisite: ECE 110 or both ECE 205 and ECE 206; ME 310 or TAM 335.

ABE 466   Engineering Off-Road Vehicles   credit: 3 Hours.

Design and application of off-road vehicles for farm and construction use; thermodynamics of engines; measurement of power and efficiencies; power transmission and traction; chassis mechanics; operator environment. 3 undergraduate hours. 3 graduate hours. Credit is not given for both ABE 466 and TSM 464. Prerequisite: ME 300.

ABE 469   Industry-Linked Design Project   credit: 4 Hours.

Industry-submitted and sponsored design projects which utilize principles of design, engineering analysis and functional operation of engineering systems. Design teams develop concepts, evaluate alternatives, model and analyze solutions, and build and test a final product. Emphases on communication skills, technical writing, and interaction with industry representatives. 4 undergraduate hours. 4 graduate hours. Prerequisite: One of ABE 361, CHBE 421, TAM 335; or credit or concurrent registration in ME 370.
This course satisfies the General Education Criteria for:
UIUC: Advanced Composition

ABE 474   Indoor Environmental Control   credit: 3 or 4 Hours.

Analysis of indoor environments and relationship with humans, animals and plants. Interactions between facilities operation and both human comfort and animal plant production. Psychrometrics, occupant health and comfort, structural heat transfer, heating and cooling loads, and energy and mass balances as related to indoor environment, air properties, and ventilation. 3 undergraduate hours. 3 or 4 graduate hours. Prerequisite: TAM 335, and ME 300 or CHBE 321, or consent of instructor.

ABE 476   Indoor Air Quality Engineering   credit: 4 Hours.

Principles and applications of indoor air quality. Particle mechanics, gas kinetics, air quality sampling principles and techniques, air cleaning technologies such as filters, cyclones, electrostatic precipitation for indoor environments; ventilation effectiveness for pollutant control. Research or design project. 4 undergraduate hours. 4 graduate hours. Prerequisite: PHYS 213, MATH 285, and TAM 335.

ABE 483   Engrg Properties of Food Matls   credit: 3 Hours.

Physical properties of foods and biological materials; properties relating to equipment design and the sensing and control of food processes; thermal, electromagnetic radiation, rheological, and other mechanical properties. 3 undergraduate hours. 3 graduate hours. Prerequisite: TAM 251; either CHBE 421 or both ME 330 and TAM 335.

ABE 488   Bioprocessing Biomass for Fuel   credit: 3 Hours.

Engineering and scientific principles governing bioprocessing of biomass for production of ethanol and other fermentation products. Process unit operations; conventional and alternative feed stock materials; recovery of value-added coproducts and other variables involved in producing fuel ethanol; process simulation; economic analysis. 3 undergraduate hours. 3 graduate hours. Prerequisite: CHBE 321 and TAM 335.

ABE 497   Independent Study   credit: 1 to 4 Hours.

Individual research, special problems, thesis, development or design work under the supervision of a member of the faculty. 1 to 4 undergraduate hours. No graduate credit. May be repeated to a maximum of 8 hours. Prerequisite: Consent of instructor.

ABE 498   Special Topics   credit: 0 to 4 Hours.

Subject offerings of new and developing areas of knowledge in agricultural and biological engineering intended to augment the existing curriculum. See Class Schedule or departmental course information for topics and prerequisites. 1 to 4 undergraduate hours. 1 to 4 graduate hours. May be repeated in the same or separate terms if topics vary to a maximum of 16 hours.

ABE 501   Graduate Research I   credit: 1 Hour.

Basic research orientation, research methods, presentation skills, laboratory practices, case studies, and professional and ethical conduct.

ABE 502   Graduate Research II   credit: 1 Hour.

Research methodology, teaching methods, lecture preparation and delivery, critical review of scientific articles, peer review and publishing, mentoring and peer relationships, time management, and intellectual property.

ABE 594   Graduate Seminar   credit: 0 Hours.

Presentations of thesis research by graduate students; other presentations on teaching or current research issues related to agricultural and biological engineering. Approved for S/U grading only. May be repeated up to a maximum of 6 times.

ABE 597   Independent Study   credit: 1 to 4 Hours.

Individual investigations or studies of any phases of agricultural engineering selected by the student and approved by the advisor and the faculty member who will supervise the study. May be repeated to a maximum of 16 hours. Prerequisite: Consent of instructor.

ABE 598   Special Topics   credit: 1 to 4 Hours.

Subject offerings of new and developing areas of knowledge in agricultural and biological engineering intended to augment the existing curriculum. See Class Schedule or departmental course information for topics and prerequisites. May be repeated in the same or separate terms if topics vary to a maximum of 8 hours.

ABE 599   Thesis Research   credit: 0 to 16 Hours.

Approved for S/U grading only. May be repeated.